An elastomeric stamp, containing defined features on the micrometer scale, was used to imprint gold surfaces with specific patterns of self-assembled monolayers of alkanethiols and, thereby, to create islands of defined shape and size that support extracellular matrix protein adsorption and cell attachment. Through this technique, it was possible to place cells in predetermined locations and arrays, separated by defined distances, and to dictate their shape. Limiting the degree of cell extension provided control over cell growth and protein secretion. This method is experimentally simple and highly adaptable. It should be useful for applications in biotechnology that require analysis of individual cells cultured at high density or repeated access to cells placed in specified locations.
Among the host of substratum properties that affect animal cell behavior, surface morphology has received relatively little attention. The earliest effect of surface morphology on animal cells was discovered almost a century ago when it was found that cells became oriented in response to the underlying topography. This phenomenon is now commonly known as contact guidance. From then until very recently, little progress has been made in understanding the role of surface morphology on cell behavior, primarily due to a lack of defined surfaces with uniform morphologies. This problem has been solved recently with the development of photolithographic techniques to prepare substrata with well defined and uniform surface morphologies. Availability of such surfaces has facilitated systematic in vitro experiments to study influence of surface morphology on diverse cell physiological aspects such as adhesion, growth, and function. For example, these studies have shown that surfaces with uniform multiples parallel grooves can enhance cell adhesion by confining cells in grooves and by mechanically interlocking them. Several independent studies have demonstrated that cell shape is a major determinant of cell growth and function. Because surface morphology has been shown to modulate the extent of cell spreading and cell shape, its effects on cell growth and function appear to be mediated via this biological coupling between cell shape and function. New evidence in the cell biology literature is emerging to suggest that surface morphology could affect other cell behavioral properties such as post-translational modifications. Further elucidation of such effects will enable better designs for implant and cell culture substrata.
A rapid, in-process assessment of virus replication is disired to quickly investigate the effects of process parameters on virus infection, and to monitor consistency of process in routine manufacturing of viral vaccines. Live virus potency assays are generally based on plaque formation, cytopathic effect, or antigen production (TCID(50)) and can take days to weeks to complete. Interestingly, when infected with viruses, cultured cells undergo changes in cellular metabolism that can be easily measured. These phenomena appear to be common as they has been observed in a variety of virus-host systems, e.g., in insect cells infected with baculovirus, Vero cells infected with Rotavirus, MRC-5 cells infected with Hepatitis A virus, and MRC-5 cells infected with the Varicella Zoster Virus (VZV). In this article, changes in glycolytic metabolism of MRC-5 cells as a result of CVZ infection are described. Both glucose consumption and lactate production in VZV infected MRC-5 cells are significantly elevated in comparison to uninfected cells. Based on this result, a rapid, in-process assay to follow VZV infection has been developed. The relative increase in lactate production in infected cells (α) increases as the infection progresses and then plateaus as the infection peaks. This plateau correlates with time of peak virus titer and could be used as a harvest triggering parameter in a virus production process.X(u) = cell density of uninfected cellsX(i) = cell density of infected cellsX(T) = total cell densityL(i) = cumulative lactate production in infected culturesL(u) = cumulative lactate production in uninfected culturesq(Li) = specific lactate production of infected cellsq(Lu) = specific lactate production of uninfected cellsk(1), K(2) = constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.