A compressible liquid-drop model (CLDM) is used to correlate uncertainties associated with the properties of the neutron star (NS) crust with theoretical estimates of the uncertainties associated with the equation of state (EOS) of homogeneous neutron and nuclear matter. For the latter, we employ recent calculations based on Hamiltonians constructed using Chiral Effective Field theory (χEFT). Fits to experimental nuclear masses are employed to constrain the CLDM further, and we find that they disfavor some of the χEFT Hamiltonians. The CLDM allows us to study the complex interplay between bulk, surface, curvature, and Coulomb contributions, and their impact on the NS crust. It also reveals how the curvature energy alters the correlation between the surface energy and the bulk symmetry energy. Our analysis quantifies how the uncertainties associated with the EOS of homogeneous matter implies significant uncertainties for the composition of the crust, its proton fraction, and the volume fraction occupied by nuclei. We find that the finite-size effects impact the crust composition, but have a negligible effect on the net isospin asymmetry of matter. The isospin asymmetry is largely determined by the bulk properties and the isospin dependence of the surface energy. The most significant uncertainties associated with matter properties in the densest regions of the crust, the precise location of the crust-core transition, are found to be strongly correlated with uncertainties associated with the Hamiltonians. By adopting a unified model to describe the crust and the core of NSs, we tighten the correlation between their global properties such as their mass-radius relationship, moment of inertia, crust thickness, and tidal deformability with uncertainties associated with the nuclear Hamiltonians.
Fusion cross sections of the 28Si + 100Mo system have been measured near and below the Coulomb barrier by detecting the evaporation residues at forward angles. The excitation function has an overall smoother trend than what obtained in a previous experiment, and a large discrepancy is found for the lowest-energy region, where we observe a tendency of the S factor to develop a maximum, which would be a clear indication of hindrance. The results have been compared with the theoretical prediction of coupled-channels calculations using a Woods–Saxon nuclear potential, and including the low-energy excitation modes of both nuclei. Good agreement with data is found by including, in the coupling scheme, the three lowest members of the ground state rotational band of the oblate deformed 28Si, and two-phonons of the strong quadrupole vibration of 100Mo. The additional coupling, in a schematic way, of the two-neutron pick-up between ground states (Q-value = +4.86 MeV) has a minor effect on calculated cross sections, and does not essentially improve the data fit. The excitation function of 28Si + 100Mo has been compared with that of (1) the heavier system 60Ni + 100Mo having analogous features, and (2) several near-by 28Si, 32S + Zr, Mo systems with various nuclear structures and transfer Q-values. The role of quadrupole and octupole excitation modes, as well as of transfer channels, in affecting the fusion dynamics, are clarified to some extent. Systematic measurements of fusion barrier distributions and CC calculations properly including transfer couplings, are necessary, in order to shed full light on the influence of the various coupled channels on the fusion cross sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.