This paper seeks to evaluate the impact of the removal of restrictions (partial and complete) imposed during COVID-19-induced lockdowns on property offences such as robbery, burglary, and theft during the milder wave one and the more severe wave two of the pandemic in 2020 and 2021, respectively. Using 10-year data of the daily counts of crimes, the authors adopt an auto-regressive neural networks method to make counterfactual predictions of crimes, representing a scenario without the pandemic-induced lockdowns. The difference between the actual and forecast is the causal impact of the lockdown in all phases. Further, the research uses Google Mobility Community Reports to measure mobility. The analysis has been done at two levels: first, for the state of Tamil Nadu, which has a sizeable rural landscape, and second for Chennai, the largest metropolitan city with an urban populace. During the pandemic-induced lockdown in wave one, there was a steep decline in the incidence of property offences. On removing restrictions, the cases soared above the counterfactual predicted counts. In wave two, despite the higher severity and fatality in the COVID-19 pandemic, a similar trend of fall and rise in property cases was observed. However, the drop in mobility was less substantial, and the increase in the magnitude of property offences was more significant in wave two than in wave one. The overall trend of fluctuations is related to mobility during various phases of restrictions in the pandemic. When most curbs were removed, there was a surge in robberies in Tamil Nadu and Chennai after adjusting for mobility. This trend highlights the effective increase in crime due to pandemic-related economic and social consequences. Further, the research enables law enforcement to strengthen preventive crime work in similar situations, when most curbs are removed after a pandemic or other unanticipated scenarios.
In the concept of a microstructured bubble column reactor, microstructuring of the catalyst carrier is realized by introducing a static mesh of thin wires coated with catalyst inside the column. Meanwhile, the wires also serve the purpose of cutting the bubbles, which in turn results in high interfacial area and enhanced interface hydrodynamics. However, there are no models that can predict the fate of bubbles (cut/stuck) passing through these wires, thus making the reactor optimization difficult. In this work, based on several typical bubble−wire interacting configurations, we analyze the outcomes by applying the energy balance of the bubble focusing on buoyancy and surface tension. Two limiting cases of viscosity, corresponding to the ability of the bubble to reconfigure into the lowest energy state, are investigated. Upon analysis, it is observed that a narrow mesh spacing and a smaller bubble Eoẗvos number generally result in bubbles getting stuck underneath the wire. We have obtained the threshold grid spacing and the critical Eoẗvos number for bubble passage and bubble cutting, which are verified by the direct numerical simulation results of bubble passing through a single mesh opening. The derived energy balance is generalized to large meshes with multiple openings and different configurations. Finally, a closure model based on the outcomes of energy-balance analysis is proposed for Euler−Lagrange simulations of microstructured bubble columns.
This study investigates the important role of attendant factors, such as road traffic victims’ access to trauma centres, the robustness of health infrastructure, and the responsiveness of police and emergency services in the incidence of Road Traffic Injuries (RTI) during the pandemic-induced COVID-19 lockdowns. The differential effects of the first and second waves of the pandemic concerning perceived health risk and legal restrictions provide us with a natural experiment that helps us differentiate between the impact of attendant factors and the standard relationship between mobility and Road Traffic Injuries. The authors use the auto-regressive recurrent neural network method on two population levels–Tamil Nadu (TN), a predominantly rural state, and Chennai, the most significant metropolitan city of the state, to draw causal inference through counterfactual predictions on daily counts of road traffic deaths and Road Traffic Injuries. During the first wave of the pandemic, which was less severe than the second wave, the traffic flow was correlated to Road Traffic Death/Road Traffic Injury. In the second wave’s partial and post lockdown phases, an unprecedented fall of over 70% in Road Traffic Injury—Grievous as against Road Traffic Injury—Minor was recorded. Attendant factors, such as the ability of the victim to approach relief centres, the capability of health and other allied infrastructures, transportation and medical treatment of road traffic crash victims, and minimal access to other emergency services, including police, assumed greater significance than overall traffic flow in the incidence of Road Traffic Injury in the more severe second wave. These findings highlight the significant role these attendant factors play in producing the discrepancy between the actual road traffic incident rate and the officially registered rate. Thus, our study enables practitioners to observe the mobility-adjusted actual incidence rate devoid of factors related to reporting and registration of accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.