A method to determine tortuosity in a fibrous porous medium is proposed. A new approach for sample preparation and testing has been followed to establish a relationship between air permeability and fiberweb thickness which formed the basis for the determination of tortuosity in fibrous porous media. An empirical relationship between tortuosity and fiberweb structural properties including porosity, fiber diameter and fiberweb thickness has been proposed unlike the models in the literature which have expressed tortuosity as a function of porosity only. Transverse air flow through a fibrous porous media increasingly becomes less tortuous with increasing porosity, with the value of tortuosity approaching 1 at upper limits of porosity. Tortuosity also decreased with increase in fiber diameter whereas increase in fiberweb thickness resulted in the increase in tortuosity within the range of fiberweb thickness tested.
Radiation heat transfer is found to be the dominant mode of heat transfer at temperatures higher than 400-500K [11]. Convection heat transfer being negligible in nonwovens, effective thermal conductivity is given by the sum of its conduction and radiation components. In this research two methods were identified to determine radiative thermal conductivity of needlepunched samples made from Nomex fibers. The first method involved the determination of radiative thermal conductivity using effective (total) thermal conductivity determined using a Guarded Hot Plate (GHP) instrument. In the second method radiative thermal conductivity was estimated using the extinction coefficient of samples. The extinction coefficient was determined by using direct transmission measurements made using a Fourier Transform InfraRed (FTIR) spectrometer. Results confirmed that radiation was the dominant mode of heat transfer at temperatures higher than 535 K. The conduction component of effective thermal conductivity did not change much in the range of densities tested. Empirical models for predicting the temperature difference across thickness of the fabric and the radiative thermal conductivity with R-square values of 0.94 and 0.88 respectively showed that fabric density, fabric thickness, fiber fineness, fiber length, mean pore size and applied temperature were found to have significant effect on the effective thermal conductivity and its radiation component. Though a high correlation between the results of Method 1 (Guarded Hot Plate) and Method 2 (FTIR) was not seen, the absorbance measurements made using the FTIR spectrometer were found to have significant effect on the radiative thermal conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.