Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (Severe Acute Respiratory Syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocyte-macrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage and impaired virus-specific T cell responses. Genetic ablation of the IFN-αβ receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses.
Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8 T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8 T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8 T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.
Vijay et al. show that an age-dependent increase of phospholipase A2 group IID (PLA2G2D) in the lung contributes to worse outcomes in mice infected with SARS-CoV. Mice lacking (PLA2G2D) had increased survival to lethal infection with enhanced DC migration to the dLN and augmented T cell responses. The results suggest that targeting (PLA2G2D) in elderly patients with respiratory infections could represent an attractive therapeutic strategy.
Infectious pathogens contribute to the development of autoimmune disorders, but the mechanisms connecting these processes are incompletely understood. Here we show that Plasmodium DNA induces autoreactive responses against erythrocytes by activating a population of B cells expressing CD11c and the transcription factor T-bet, which become major producers of autoantibodies that promote malarial anaemia. Additionally, we identify parasite DNA-sensing through Toll-like receptor 9 (TLR9) along with inflammatory cytokine receptor IFN-γ receptor (IFN-γR) as essential signals that synergize to promote the development and appearance of these autoreactive T-bet+ B cells. The lack of any of these signals ameliorates malarial anaemia during infection in a mouse model. We also identify both expansion of T-bet+ B cells and production of anti-erythrocyte antibodies in ex vivo cultures of naive human peripheral blood mononuclear cells (PBMC) exposed to P. falciprum infected erythrocyte lysates. We propose that synergistic TLR9/IFN-γR activation of T-bet+ B cells is a mechanism underlying infection-induced autoimmune-like responses.
Plasmodium
parasite-specific antibodies are critical for
protection against malaria, yet the development of long-lived and effective
humoral immunity against
Plasmodium
takes many years and
multiple rounds of infection and cure. Here we report that the rapid development
of short-lived plasmablasts during experimental malaria unexpectedly hindered
parasite control by impeding germinal center (GC) responses. Metabolic
hyperactivity of plasmablasts resulted in nutrient deprivation of the GC
reaction limiting the generation of memory B cell and long-lived plasma cell
responses. Therapeutic administration of a single amino acid to experimentally
infected mice was sufficient to overcome the metabolic constraints imposed by
plasmablasts and enhanced parasite clearance and the formation of protective
humoral immune memory responses. Thus, our studies not only challenge the
current paradigm describing the role and function of blood-stage
Plasmodium
-induced plasmablasts, but also reveal new
targets and strategies to improve anti-
Plasmodium
humoral
immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.