Pathogens and antibiotics enter the aquatic environment via sewage effluents and may pose a health risk to wild life and humans. The aim of this study was to determine the levels of faecal bacteria, and selected antibiotic residues in raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and membrane technologies were incorporated in the treatment processes. Coliforms and Escherichia coli (E. coli) were used as bioindicators for faecal bacteria. A chromogenic test was used to screen for coliforms and E. coli. Fluoroquinolones and sulfamethoxazole are commonly used antibiotics and were selected to monitor the efficiency of sewage treatment processes for antibiotic removal. Enzyme Linked Immunosorbent Assays (ELISAs) were used to quantitate antibiotic residues in raw and treated sewage. Raw intake water at all treatment plants contained total coliforms and E. coli. High removal of E. coli by treatment processes was evident for treatment plant 2 and 3 only. Fluoroquinolones and sulfamethoxazole were detected in raw wastewater from all sewage treatment plants. Treatment processes at plant 1 did not reduce the fluoroquinolone concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced the fluoroquinolone concentration by 21% and 31%, respectively. Treatment processes at plant 1 did not reduce the sulfamethoxazole concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced sulfamethoxazole by 34% and 56%, respectively. This study showed that bacteria and antibiotic residues are still discharged into the environment. Further research needs to be undertaken to improve sewage treatment technologies, thereby producing a better quality treated sewage effluent.
The in vitro effects of Aspalathus linearis (Rooibos tea) and Camellia sinensis (Black tea) on biomarkers of specific immune pathways were determined using whole blood culture assays. Stimulated and unstimulated whole blood cultures were incubated with tea extracts. Enzyme linked immunosorbent assays were used to screen spent culture medium for Interleukin-6, Interleukin-10 and Interferon gamma as biomarkers for inflammation, humoral immunity, and cell mediated immunity, respectively. Rooibos and Black tea addition to unstimulated whole blood cultures induced higher Interleukin-6, Interleukin-10, and Interferon gamma secretion. Addition of Rooibos tea to stimulated whole blood cultures induced higher Interleukin-6, lower Interleukin-10, and had no effect on Interferon gamma secretion. Black tea addition to stimulated whole blood cultures inhibited Interleukin-6, Interleukin-10, and Interferon gamma production. The data indicates that Rooibos and Black tea modulates immune function in vitro.
Wastewater consists of a complex mixture of substances. During wastewater treatment these harmful substances can be eliminated or degraded. However, persistent compounds released with the treated sewage effluents enter the environment and pose a risk to animal and human life. To determine the potential risks involved, screening tests are needed to monitor wastewater for potential toxic contaminants. The aim of this study was to validate and use screening tests to determine the toxicity of raw wastewater and treated sewage effluents from 3 sewage treatment plants in the Western Cape, South Africa. Raw wastewater and treated sewage effluents were screened for cytotoxicity using lactate dehydrogenase (LDH) release from cells as biomarker, for neurotoxicity using acetylcholinesterase (AChE) inhibition and for genotoxicity using the Save Our Soul (SOS) test. Results showed no cytotoxicity for both raw wastewater and treated sewage effluents from all sewage treatment plants. Raw wastewater from all sewage treatment plants contained AChE inhibitors and sewage treatment processes were not effective at eliminating these AChE inhibitors. Raw wastewater from all sewage treatment plants tested positive for genotoxicity. Treated sewage effluents from all three sewage treatment plants displayed no genotoxicity indicating effective removal of genotoxins by all three sewage treatment plants investigated.
Ma ry G. Buchana n Robert W. Hend ri cks NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National L uburulvry. II i::. ::.ubjc::cl lo revision or correction 011d 1l1erefo1'e does not represent a final report .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.