Composites reinforced with natural lignocellulosic fibers (NLFs) are gaining relevance as the worldwide demand for renewable and sustainable materials increases. To develop novel natural composites with satisfactory properties, less common NLFs should also be investigated. Among these, the Cyperus malaccensis (CM), a type of sedge fiber, is already used in simple items like ropes, furniture, and paper, but has not yet been investigated as composite reinforcement for possible engineering applications. Therefore, the present work evaluated for the first time the properties of novel epoxy composites incorporated with 10, 20, and 30 vol.% of CM sedge fibers. Tensile, Izod-impact, and ballistic impact tests were performed, as well as Fourier transform infrared (FT-IR) spectroscopy and thermal analysis of the composites. Results disclosed a decrease (−55%) in tensile strengths as compared to the neat epoxy. However, the elastic modulus of the 30 vol.% sedge fiber composite increased (+127%). The total strain and absorbed ballistic energy did not show significant variation. The Izod impact energy of the 30 vol.% composite was found to be 181% higher than the values obtained for the neat epoxy as a control sample. An increase in both stiffness and toughness characterized a reinforcement effect of the sedge fiber. The thermal analysis revealed a slight decrease (−15%) in the degradation temperature of the CM sedge fiber composites compared to the neat epoxy. The glass-transition temperatures were determined to be in the range of 67 to 81 °C.
A growing environmental concern is increasing the search for new sustainable materials. In this scenario, natural lignocellulosic fibers (NLFs) became an important alternative to replace synthetic fibers commonly used as composites reinforcement. In this regard, unknown NLFs such as the caranan fiber (Mauritiella armata) found in South American rain forests revealed promising properties for engineering applications. Thus, for the first time, the present work conducted a technical characterization of caranan fiber-incorporated composites. Epoxy matrix composites with 10, 20 and 30 vol% of continuous and aligned caranan fibers were investigated by tensile tests, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Composites with more than 10% vol of caranan fibers significantly increase the elastic modulus and toughness in comparison to the neat epoxy. Indeed, the composite with 30 vol% was 50% stiffer, 130% tougher, and 100% stronger, which characterized an effective reinforcement. As for the elastic modulus, total strain and tensile toughness, there is a clear tendency of improvement with the amount of caranan fiber. The TGA disclosed the highest onset temperature of degradation (298 °C) with the least mass loss (36.8%) for the 30 vol% caranan fiber composite. It also displayed a higher degradation peak at 334 °C among the studied composites. The lowest glass transition temperature of 63 °C was obtained by DSC, while the highest of 113 °C by dynamic mechanical analysis (DMA) for the 30 vol% caranan composite. These basic technical findings emphasize the caranan fiber potential as reinforcement for polymer composites.
A basic characterization of novel epoxy matrix composites incorporated with up to 40 vol% of processed leaf fibers from the Copernicia prunifera palm tree, known as carnauba fibers, was performed. The tensile properties for the composite reinforced with 40 vol% of carnauba fibers showed an increase (40%) in the tensile strength and (69%) for the elastic modulus. All composites presented superior elongation values in comparison to neat epoxy. Izod impact tests complemented by fibers/matrix interfacial strength evaluation by pullout test and Fourier transformed infrared (FTIR) analysis revealed for the first time a significant reinforcement effect (> 9 times) caused by the carnauba fiber to polymer matrix. Additional thermogravimetric analysis (TG/DTG) showed the onset of thermal degradation for the composites (326 ~ 306 °C), which represents a better thermal stability than the plain carnauba fiber (267 °C) but slightly lower than that of the neat epoxy (342 °C). Differential scanning calorimetry (DSC) disclosed an endothermic peak at 63 °C for the neat epoxy associated with the glass transition temperature (Tg). DSC endothermic peaks for the composites, between 73 to 103 °C, and for the plain carnauba fibers, 107 °C, are attributed to moisture release. Dynamic mechanical analysis confirms Tg of 64 °C for the neat epoxy and slightly higher composite values (82–84 °C) due to the carnauba fiber interference with the epoxy macromolecular chain mobility. Both by its higher impact resistance and thermal behavior, the novel carnauba fibers epoxy composites might be considered a viable substitute for commonly used glass fiber composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.