The development of biorefineries brings the necessity of an efficient consumption of all sugars released from biomasses, including xylose. In addition, the presence of inhibitors in biomass hydrolysates is one of the main challenges in bioprocess feasibility. In this study, the application of Ca-alginate hybrid gels in the immobilization of xylose-consuming recombinant yeast was explored with the aim of improving the tolerance of inhibitors. The recombinant yeast Saccharomyces cerevisiae GSE16-T18SI.1 (T18) was immobilized in Ca-alginate and Ca-alginate–chitosan hybrid beads, and its performance on xylose fermentation was evaluated in terms of tolerance to different acetic acid concentrations (0–12 g/L) and repeated batches of crude sugarcane bagasse hemicellulose hydrolysate. The use of the hybrid gel improved yeast performance in the presence of 12 g/L of acetic acid, achieving 1.13 g/L/h of productivity and reaching 75% of the theoretical ethanol yield, with an improvement of 32% in the xylose consumption rate (1:1 Vbeads/Vmedium, 35 °C, 150 rpm and pH 5.2). The use of hybrid alginate–chitosan gel also led to better yeast performance at crude hydrolysate, yielding one more batch than the pure-alginate beads. These results demonstrate the potential of a hybrid gel as an approach that could increase 2G ethanol productivity and allow cell recycling for a longer period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.