Agradeço a meu orientador, André Salles pela sua orientação, paciência, e acompanhamento no desarrolho do doutorado, e por me introduzir neste maravilhoso tema de pesquiça. Ao Prof. Sylvain Bonnot por sua apoio constaste. Ao IME da Universidade de São Paulo e seu corpo de professores, à Cnpq pelo apoio financeiro. A Minoru obrigado pelas conversas de matemática. A Pedro, Jeovanny, Hector Cabarcas e muitos outros obrigado por me apoiar. El núcleo duro: Andres e Michael. Finalmenta a minha família, em especial à minha Avo e Tia, sem elas este logro não tivesse sido possível.
Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ϵ 2 [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ϵ [0; n], with α ≤ β , we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms with upper metric mean dimension equal to n is residual in Hom(N).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.