Qualitative Comparative Analysis (QCA) is an emergent methodology of diverse applications in many disciplines. However, its premises and techniques are continuously subject to discussion, debate, and (even) dispute. We use a regular and modular Karnaugh map to explore a prominent recently-posed eight-variable QCA problem. This problem involves a partially-defined Boolean function (PDBF), that is dominantly unspecified. Without using the algorithmic integer-programming approach, we devise a simple heuristic map procedure to discover minimal sets of supporting variables. The eight-variable problem studied herein is shown to have at least two distinct such sets, with cardinalities of 4 and 3, respectively. For these two sets, the pertinent function is still a partially-defined Boolean function (PDBF), equivalent to 210 = 1024 completely-specified Boolean functions (CSBFs) in the first case, and to four CSBFs only in the second case. We obtained formulas for the four functions of the second case, and a formula for a sample fifth function in the first case. Although only this fifth function is unate, each of the five functions studied does not have any non-essential prime implicant, and hence each of them enjoys the desirable feature of having a single IDF that is both a unique minimal sum and the complete sum. According to our scheme of first identifying a minimal set of supporting variables, we avoided the task of drawing prime-implicant loops on the initial eight-variable map, and postponed this task till the map became dramatically reduced in size. Our map techniques and results are hopefully of significant utility in future QCA applications.
We use a regular and modular eight-variable Karnaugh map to reveal some technical details of Boolean minimization usually employed in solving problems of Qualitative Comparative Analysis (QCA). We utilize as a large running example a prominent eight-variable political-science problem of sparse diversity (involving a partially-defined Boolean function (PDBF), that is dominantly unspecified). We recover the published solution of this problem, showing that it is merely one candidate solution among a set of many equally-likely competitive solutions. We immediately obtain one of these rival solutions, that looks better than the published solution in two aspects, namely: (a) it is based on a smaller minimal set of supporting variables, and (b) it provides a more compact Boolean formula. However, we refrain from labelling our solution as a better one, but instead we stress that it is simply un-comparable with the published solution. The comparison between any two rival solutions should be context-specific and not tool-specific. In fact, the Boolean minimization technique, borrowed from the area of digital design, cannot be used as is in QCA context. A more suitable paradigm for QCA problems is to identify all minimal sets of supporting variables (possibly via integer programming), and then obtain all irredundant disjunctive forms (IDFs) for each of these sets. Such a paradigm stresses inherent ambiguity, and does not seem appealing as the QCA one, which usually provides a decisive answer (irrespective of whether it is justified or not).The problem studied herein is shown to have at least four distinct minimal sets of supporting variables with various cardinalities. Each of the corresponding functions does not have any non-essential prime implicants, and hence each enjoys the desirable feature of having a single IDF that is both a unique minimal sum and the complete sum. Moreover, each of them is unate as it is expressible in terms of un-complemented literals only. Political scientists are invited to investigate the meanings of the (so far) abstract formulas we obtained, and to devise some context-specific tool to assess and compare them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.