Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networkscloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverseweighted distance for the interpolation of gauge measurements. Seven years (2010-2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010-2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations.
Water is one of the most important natural resources and is widely used around the globe for various purposes. In fact, the agricultural sector consumes 70% of the world’s accessible water, of which about 60% is wasted. Thus, it needs to be managed scientifically and efficiently to maximize food production to meet the requirements of an ever-increasing population. There is a lack of information on water requirements of crops and irrigation scheduling concerning the Shaheed Benazirabad district, Pakistan. Thus, the present study was conducted to determine the irrigation water requirements (IWR) and irrigation scheduling for the major crops in the Shaheed Benazirabad district, Sindh, Pakistan, using agro-climatic data and the CROPWAT model. Agro-climatic data such as rainfall, maximum and minimum temperature, sunshine hours, humidity, and wind speed were obtained from the NASA website, CLIMWAT 2.0, and world weather However, data about studied crops and soils were obtained from FAO (Food and Agriculture Organization). Analysis revealed that the IWRs per irrigation round for the four major crops—sugarcane, banana, cotton, and wheat—were as 3108.0 mm, 1768.5 mm, 1655.7 mm, and 402.5 mm, respectively. It was observed the IWRs are more sensitive in the hot season because of high temperatures and low relative humidity, and vice versa in the cold season. The use of scientific tools such as CROPWAT is recommended to assess IWRs with a high degree of accuracy and to compute irrigation scheduling. Accordingly, the study results will be helpful for improving food production and supervision of water resources.
The many hydrodynamic implications associated with the geomorphological evolution of braided rivers are still not profoundly examined in both experimental and numerical analyses, due to the generation of three-dimensional turbulence structures around sediment bars. In this experimental research, the 3D velocity fields were measured through an acoustic Doppler velocimeter during flume-scale laboratory experimental runs over an emerging sand bar model, to reproduce the hydrodynamic conditions of real braided rivers, and the 3D Turbulent Kinetic Energy (TKE) components were analyzed and discussed here in detail. Given the three-dimensionality of the examined water flow in the proximity of the experimental bar, the statistical analysis of the octagonal bursting events was applied to analyze and discuss the different flume-scale 3D turbulence structures. The main novelty of this study is the proposal of the 3D Hole Size (3DHS) analysis, used for separating the extreme events observed in the experimental runs from the low-intensity events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.