This paper presents the design and development of two all flat panel phased array antennas (PAA) by using emerging 5G Silicon radio frequency integrated circuits (RFICs) at Ku-and Ka-bands. First, an X-/Ku-band wideband dual circular polarized Transmit (Tx)/Receive (Rx) phased array antenna with the capability of scanning (±45°) is presented. The frequency of operation is centered around 12.5 GHz within the X/Ku-Bands (3dB Axial Ratio (AR) bandwidth at broadside=32%). The array has 16-elements with a 4x4 lattice arrangement. This array utilizes a nested sequential rotation architecture, which enhances the axial ratio (AR) bandwidth. Secondly, a dual slant linear polarized (±45°) transmit and receive (T/R) phased array antenna, that operates in the Ka-Band and covers the millimeter-wave 5G band (27.5-28.35 GHz) is discussed. Beam scanning range is up to ±60° in both polarizations. In both cases, the array apertures have been integrated with an active beamforming networks (BFN) utilizing 5G silicon Tx/Rx beamformer RFIC chips. Measured and simulated performance results agree reasonably well in both cases. These arrays are scalable to larger size arrays to provide higher gain for applications like satellite communications (SATCOM) and 5G communications. INDEX TERMS Silicon RFICs, Dual circular polarized, Dual slant linear polarized, Flat panel phased arrays, SATCOM, 5G Communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.