Background Treadmill training has been widely used for gait recovery after stroke. Gait re-establishment is one of the main objectives of rehabilitation programs after stroke, aiming to acquire more functional patterns and increase walking speed, along with improvement in cardiovascular function. The aim of this study is to evaluate the effects of a treadmill gait training protocol on functional and cardiovascular variables in patients with chronic stroke. Methods A single-blind randomized clinical trial will be conducted. The sample will consist of 36 patients, who will be allocated in three groups: control group (n = 12), experimental group 1 (n = 12), and experimental group 2 (n = 12). The intervention will occur for 6 consecutive weeks, three times a week, 30 min each session, in all groups. The control group will perform a treadmill gait training without inclination, experimental group 1 will perform a treadmill gait training with anterior inclination of 5%, and experimental group 2 will perform a treadmill gait training with anterior inclination of 10%. All participants will be assessed for sample characterization measures, gait speed, functional capacity, systemic arterial blood pressure, heart rate, peripheral oxygen saturation, exercise capacity, neuromuscular torque, and quality of life. Evaluations of outcome measures will occur at the end of the interventions (post-training) and after 1 month and 1 year after the end of the interventions (short- and long-term follow-up). Statistical analysis will be performed descriptively and inferentially. Alpha equals 5% will be considered for inferential analysis. Mixed analysis of variance with repeated measures will be used to compare outcome measures between groups and between baseline, post-training, and follow-up. Normality test (Shapiro–Wilk) and subsequently t test (or Mann–Whitney) will be used to compare groups during the same training session. Discussion It is believed that treadmill training, especially treadmill training with anterior inclination, may result in improved exercise capacity in patients with stroke, reduced blood pressure and heart rate values, and an improvement in functional parameters with increased gait speed, functional capacity, quadriceps muscle torque, and quality of life. Trial registration Registration in Brazilian Registry of Clinical Trials (ReBEC) identifier RBR-5ffbxz , date of registration October 25 2017. Electronic supplementary material The online version of this article (10.1186/s13063-019-3298-3) contains supplementary material, which is available to authorized users.
Introduction: Electromechanical delay (ED) and time to peak force (TPF) could be used to investigate the central or peripheral sources of performance decline in fatiguing tasks. Exercise with partial blood flow restriction (BFR) has been shown to induce fatigue, but the repercussions of exercise with partial BFR on ED and TPF are unclear. The present study aimed to compare the ED and TPF after an intermittent isometric task until failure with BFR and free blood flow (FBF). Methods: In this crossover randomized clinical trial, 15 healthy and physically active men volunteered in this study. Volunteers performed two intermittent isometric handgrip exercise (IIHE) to failure (72 h apart), combined with either BFR or FBF. Maximum voluntary isometric force (MVIF) concomitant with the electromyographic activity of the wrist and finger flexor muscles were assessed before (PRE) and one minute after (POST) the task failure. Within (PRE vs. POST) and between comparisons (eFBF vs. eBFR) of peak force, time to peak force, rate of force development (RFDpeak) and ED were carried out. Results: No significant between-intervention differences were identified pre- or post-exercise. Peak force and RFDpeak reduced significantly after both blood flow conditions (p < 0.05), but without between-condition difference. TPF was statistically higher after exercise only in the FBF intervention (p < 0.05). None of the interventions induced a significant change in the ED after IIHE. Conclusion: ED and TPF were similar after BFR and FBF, indicating both conditions induce similar acute performance impairments after IIHE, which seems not to be caused by local (i.e., muscular) factors, but probably by central (i.e., neural) factors.
Background: Kinematic gait assessment is essential to the gait rehabilitation program after stroke. Portable devices composed of inertial sensors are an alternative for this evaluation. However, knowledge regarding the psychometric properties of these devices is needed to understand their accuracy, especially in evaluation of individuals with movement disorders (e.g., people post stroke). This systematic review aims to analyze the psychometric properties of portable devices that use inertial sensors to assess kinematic gait parameters in people post stroke. We will also investigate which portable device assesses alterations in lower limb angular movements during gait. Methods: We will search for studies in English without publication date restriction, that evaluated psychometric properties of portable devices that use inertial sensors to assess kinematic gait parameters in people after stroke. Searches will be performed in the following electronic databases: Cochrane Central Registry of Controlled Trials (CENTRAL), Medline/PubMed, EMBASE Ovid, CINAHL EBSCO, PsycINFO Ovid, IEEE Xplore Digital Library (IEEE), and Physiotherapy Evidence Database (PEDro). Gray literature will also be searched, including published and unpublished studies (dissertations and theses). The Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) risk of bias tool will be used to assess the quality of studies that analyzed reliability and measurement error of devices. Expected results: This will be the first review assessing the risk of bias in studies that analyzed psychometric properties of portable devices that use inertial sensors to assess kinematic gait parameters in people post stroke. Then, we hope to elucidate this topic and help the decision-making of clinicians regarding the feasibility of these devices. Finally, we also hope to provide an overview of the characteristics of portable devices that assessed changes in angular lower limb movements during gait in this population. Registration: The protocol was registered in Open Science Framework on May 11th 2023 (https://doi.org/10.17605/OSF.IO/7M6DA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.