News of the Academy of sciences of the Republic of Kazakhstan 2 NAS RK is pleased to announce that News of NAS RK. Series of chemistry and technologies scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of chemistry and technologies in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of chemical sciences to our community. Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Химия жəне технология сериясы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан əрі the Science Citation Index Expanded, the Social Sciences Citation Index жəне the Arts & Humanities Citation Index-ке қабылдау мəселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Химия жəне технология сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті жəне беделді химиялық ғылымдар бойынша контентке адалдығымызды білдіреді. НАН РК сообщает, что научный журнал «Известия НАН РК. Серия химии и технологий» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по химическим наукам для нашего сообщества.
Significant oil losses in oil-containing wastes and their adverse impact on the region environmental setting bring about the need to develop an oil-containing wastes treatment technology. To tackle this issue, the authors have set an aim of designing a helio device and creating an oil-containing wastes treatment method based on it to extract oil products. Considering a widespread in the composition and properties of potential oil sludge raw materials and their tendency for either formation of stable emulsions or phase separation, we have conducted in-depth modern physical and chemical studies and defined the need to develop a commercial oil-containing wastes purification method. We have designed the device, in which oil product hydrocarbons undergo thermal treatment using solar energy. Following oil-containing wastes purification using solar energy, the particulate load in soil does not exceed 6.65–6.79 % and the absolute molecular weight of hydrocarbons approaches that of bitumen. The developed oil-containing wastes purification method solves an important environmental issue of oil-containing wastes recycling, promotes recovery, and prevents degradation of natural complexes, and reduces soil and water pollution.
The article describes in detail the complex oil-containing waste treatment by applying solar energy. The developed Helio devices are equipped with concentrating elements to extract oil in the purification of dump oil. The questions of practical application of pre-treated oil-contaminated soils and oil sludge to strengthen road surfaces are considered. The results of the experimental study on the production of soil concrete is based on oily dump. The structures of the soil concrete made on the basis of oil-contaminated soils and oil sludge are investigated and relevant proposals are made.
Electrochemical methods have been increasingly gaining popularity in the field of wastewater treatment. However, the performance of these methods can be highly affected by the polarity direction as determined by the electrodes arrangement (anode to cathode or cathode to anode); as well as the characteristics of the wastewater to be treated as determined by the type of wastewater. The presented research work investigated the relationship between polarity direction and the removal of pollutants from poultry slaughterhouse wastewater using titanium and aluminium electrode materials. In the first case, the wastewater was exposed to the Ti (anode)-Al (cathode) combination, whereas in the second case the wastewater was subjected to the Al (anode)-Ti (cathode) arrangement. The two cases were designed to see if the polarity direction of the chosen electrode materials affected the removal of pollutants. The removal efficiencies were computed as a ratio of the remaining concentration in the treated effluent to the concentration before treatment. It was observed that the production processes generate highly fluctuating wastewater in terms of pollution loading; for instance, 422 to 5340 Pt-Co (minimum to maximum) were recorded from color, 126 to 2264 mg/L were recorded from total dissolved solids, and 358 to 5998 mg/L from chemical oxygen demand. Also, the research results after 40 min of retention time showed that both electrode arrangements achieved relatively high removal efficiencies; Whereby, the aluminium to titanium polarity achieved up to 100% removal efficiency from turbidity while the titanium to aluminium polarity achieved a maximum of 99.95% removal efficiency from turbidty. Also, a similar phenomenon was observed from total dissolved solids; whereby, on average 0 mg/L was achieved when the wastewater was purified using the aluminium to titanium arrangement, while on average 2 mg/L was achieved from the titanium to aluminium arrangement. A little higher removal efficiency discrepancy was observed from ammonia; whereby, the aluminium to titanium arrangement outperformed the titanium to aluminium arrangement with average removal efficiencies of 82.27% and 64.11%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.