Enumerating all the spanning trees of a complex network is theoretical defiance for mathematicians, electrical engineers and computer scientists. In this article, we propose a generalization of the Fractal Scale-Free Lattice and we study its structural properties. As its degree distribution follows a power law, we prove that the proposed generalization does not affect the scale-free property. In addition, we use the electrically equivalent transformations to count the number of spanning trees in the generalized Fractal Scale-Free Lattice. Finally, in order to evaluate the robustness of the generalized lattice, we compute and compare its entropy with other complex networks having the same average degree.
Spanning trees have been widely investigated in many aspects of mathematics: theoretical computer science, combinatorics, so on. An important issue is to compute the number of these spanning trees. This number remains a challenge, particularly for large and complex networks. As a model of complex networks, we study two families of generalized small-world networks, namely, the Small-World Exponential and the Koch networks, by changing the size and the dimension of the cyclic subgraphs. We introduce their construction and their structural properties which are built in an iterative way. We propose a decomposition method for counting their number of spanning trees and we obtain the exact formulas, which are then verified by numerical simulations. From this number, we find their spanning tree entropy, which is lower than that of the other networks having the same average degree. This entropy allows quantifying the robustness of the networks and characterizing their structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.