Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Safe water supply is one of the important Millennium Goals. For development of market water supply services, the willingness of consumers to pay is essential. The consumers' willingness to pay (WTP) for piped water supply using the contingent valuation (CV) method with different starting point bids was investigated for the Pavlodar Region, Kazakhstan. The results showed that households with access to groundwater (well or borehole water users) perceived this as of good quality. Consumers without access to groundwater used open-source, standpipe or delivered water for which they had to travel and spend time or to pay. Open source water and standpipe water quality was perceived as bad or satisfactory. More than 90% of the consumers were willing to pay for better water quality and regular water supply. The mean WTP was estimated to be about 1120 in bids and about 1590 KZT per household per month in open-ended question format (150 KZT is ~1 USD as of January 2012). The results can be used to better identify the proper technological choice and the level of service to be provided making rural water projects both sustainable and replicable at a larger scale.
Over the last 20 years, there has been increasing interest in the occurrence, fate, effects, and risk of pharmaceuticals in the natural environment. However, we still have only limited or no data on ecotoxicological risks of many of the active pharmaceutical ingredients (APIs) currently in use. This is partly due to the fact that the environmental assessment of an API is an expensive, time-consuming, and complicated process. Prioritization methodologies, which aim to identify APIs of most concern in a particular situation, could therefore be invaluable in focusing experimental work on APIs that really matter. The majority of approaches for prioritizing APIs require annual pharmaceutical usage data. These methods cannot therefore be applied to countries, such as Kazakhstan, that have very limited data on API usage. The present paper therefore offers an approach for prioritizing APIs in surface waters in information-poor regions such as Kazakhstan. Initially data were collected on the number of products and active ingredients for different therapeutic classes in use in Kazakhstan and on the typical doses. These data were then used alongside simple exposure modeling approaches to estimate exposure indices for active ingredients (about 240 APIs) in surface waters in the country. Ecotoxicological effects data were obtained from the literature or predicted. Risk quotients were then calculated for each pharmaceutical based on the exposure and the substances were ranked in order of risk quotient. Highest exposure indices were obtained for benzylpenicillin, metronidazole, sulbactam, ceftriaxone, and sulfamethoxazole. The highest risk was estimated for amoxicillin, clarithromycin, azithromycin, ketoconazole, and benzylpenicillin. In the future, the approach could be employed in other regions where usage information is limited. Integr Environ Assess Manag 2017;13:832-839. © 2017 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.