This review summarizes the proposed mechanisms for irreversible coalescence of cellulose microfibrils within fibers during various common industrial treatments for chemical pulp fibers as well as the methods to evaluate it. It is a phenomenon vital for cellulose accessibility but still under considerable debate. The proposed coalescence mechanisms include irreversible hydrogen bonding. Coalescence is induced by high temperature and by the absence of obstructing molecules, such as water, hemicelluloses, and lignin. The typical industrial processes, in the course of which nano-scale coalescence and possible aggregation of cellulose microfibrillar elements occurs, are drying and chemical pulping. Coalescence reduces cellulose accessibility and therefore, in several instances, the quality of cellulose as a raw material for novel products. The degree of coalescence also affects the processing and the quality of the products. For traditional paper-based products, the loss of strength properties is a major disadvantage. Some properties lost during coalescence can be restored to a certain extent by, e.g., beating. Several factors, such as charge, have an influence on the intensity of the coalescence. The evaluation of the phenomenon is commonly conducted by water retention value measurements. Other techniques, such as deuteration combined with FTIR spectroscopy, are being applied for better understanding of the changes in cellulose accessibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.