Low-Power Wide-Area Network (LPWAN) is one of the enabling technologies of the Internet of Things (IoT), and focuses on providing long distance connectivity for a vast amount of smart devices. Currently, LoRa is one of the leading LPWAN solutions available for public use. In LPWANs, especially in LoRa, security is a major concern due to the resource constraints of the devices, the sensitivity level of the transmitted data, the large amount of connected devices, among other reasons. This paper studies the key management mechanism of LoRaWAN environments. A secure architecture for key management based on smart contracts and permissioned blockchain to enhance security and availability in LoRaWAN networks is proposed. To demonstrate the feasibility of the proposed blockchain-based LoRaWAN architecture, a working prototype has been created using open-source tools and commodity hardware. Performance analysis shows that the prototype presents similar execution time and latency values, when compared to a traditional system, especially for small and medium-sized LoRaWAN networks. We also discuss why the proposed solution can be used in environments with a large number of end-devices.
The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration.
The growing demand for link bandwidth and node capacity is a frequent phenomenon in IP network backbones. Within this context, traffic prediction is essential for the network operator. Traffic prediction can be undertaken based on link traffic or on origin-destination (OD) traffic which presents better results. This work investigates a methodology for traffic prediction based on multidimensional OD traffic, focusing on the stage of short-term traffic prediction using Principal Components Analysis as a technique for dimensionality reduction and a Local Linear Model based on K-means as a technique for prediction and trend analysis. The results validated with data on a real network present a satisfactory margin of error for use in practical situations.Index Terms-Traffic prediction, principal component analysis, k-means cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.