A major challenge of future mobile networks is providing the needed elastic scaling to the increased traffic demand, number of users and applications with acceptable cost. Another challenge is suitability for numerous communications applications while curbing unwanted traffic on the air interface and the mobile devices. This paper proposes a vision of how these challenges can be met by applying the concept of Software Defined Networking (SDN) to mobile networks. We also discuss the needed migration path that minimizes unnecessary replacement investments. While we have verified some key parts of the vision with experiments, we realize that the effectiveness of the proposed approach depends on the adoption of SDN technology for other purposes so that mass production of SDN switches leads to significant economies of scale. The paper shows how we can model mobile networks using SDN concepts and migrate the 3GPP mobile architecture to SDN. The resulting control plane of the mobile architecture consists of a group of SDN applications starting from the base stations i.e., virtual eNodeBs, Backhaul transport, Mobility management, Access, Caching, Monitoring, and Services delivery. The data plane consists of simplified access points and SDN and Carrier Grade Ethernet switches. Our experiments are based on using OpenFlow as the interface between the planes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.