Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.
This investigation assessed the interaction of surface water samples with DNA to quantitatively and qualitatively characterize their mutagenic and/or recombinagenic activity. Samples were obtained at three different sites along the Tocantins River (Tocantins State, Brazil). The area has withstood the impact mainly of rural activities, which release different chemical compounds in the environment. The Drosophila melanogaster Somatic Mutation and Recombination Test (SMART) was performed in standard (ST) and high bioactivation (HB) crosses. SMART is useful for the detection of mutational and recombinational events induced by genotoxins of direct and indirect action. Results demonstrated that samples collected in both seasons were able to induce increments on the mutant spot frequencies in the larvae of the HB cross. Genotoxicity was related to a massive recombinagenic activity. The positive responses ascribed to only the HB cross means that it is linked to pro-genotoxins requiring metabolic activation. The SMART wing test in Drosophila melanogaster was shown to be highly sensitive to detect genotoxic agents present in the aquatic environment impacted by agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.