Dendritic cells migrate from the skin to the draining lymph nodes. They transport immunogenic MHC-peptide complexes, present them to Ag-specific T cells in the T areas, and thus generate immunity. Migrating dendritic cells encounter physical obstacles, such as basement membranes and collagen meshwork. Prior work has revealed that matrix metalloproteinase-9 (MMP-9) contributes to mouse Langerhans cell migration. In this study, we use mouse and human skin explant culture models to further study the role of MMPs in the migration and maturation of skin dendritic cells. We found that MMP-2 and MMP-9 are expressed on the surface of dendritic cells from the skin, but not from other sources. They are also expressed in migrating Langerhans cells in situ. The migration of both Langerhans cells and dermal dendritic cells is inhibited by a broad spectrum inhibitor of MMPs (BB-3103), by Abs to MMP-9 and -2, and by the natural tissue inhibitors of metalloproteinases (TIMP), TIMP-1 and TIMP-2. Inhibition by anti-MMP-2 and TIMP-2 define a functional role for MMP-2 in addition to the previously described function of MMP-9. The importance of MMP-9 was emphasized using MMP-9-deficient mice in which Langerhans cell migration from skin explants was strikingly reduced. However, MMP-9 was only required for Langerhans cell migration and not maturation, since nonmigrating Langerhans cells isolated from the epidermis matured normally with regard to morphology, phenotype, and T cell stimulatory function. These data underscore the importance of MMPs, and they may be of relevance for therapeutically regulating dendritic cell migration in clinical vaccination approaches.
External assault to the skin is followed by an epidermal response including synthesis of DNA, lipids, cytokines and migration of antigen presenting cells. MIP-3 alpha (CCL20, LARC, Exodus-1, Scya20) is a recently described C-C chemokine, predominantly expressed in extralymphoid tissue, which is known to direct migration of dendritic cell precursors and memory lymphocytes to sites of antigen invasion. We assessed the expression of MIP-3 alpha in human skin using semi-quantitative polymerase chain reaction. In vivo, MIP-3 alpha mRNA was constitutively expressed at low levels in untreated human epidermis. After acute disruption of the epidermal permeability barrier MIP-3 alpha mRNA was upregulated in the epidermal fraction, whereas dermal MIP-3 alpha mRNA levels remained unchanged. In vitro, MIP-3 alpha was increased in cultured keratinocytes treated with IL-1 alpha and TNF-alpha and was present in immature and mature dendritic cells, THP-1 monocytic cells and activated T cells. Finally, skin biopsies from patients with psoriasis, contact dermatitis and mycosis fungoides showed abundant expression. In biopsies from atopic dermatitis and graft vs. host disease a weak signal was present, whereas no expression was found in scleroderma and toxic epidermal necrolysis. We conclude that regulation of MIP-3 alpha mRNA is part of the epidermal response to external assault. Its upregulation may represent a danger signal for increased immunosurveillance in barrier disrupted skin and inflammatory skin conditions with impaired barrier function to counteract potential antigen invasion.
We report the induction and reduction of adenosine receptor A2a and A3 mRNAs, respectively, during maturation of human monocyte-derived dendritic cells. Adenosine, an immunomodulatory molecule, is unstable in vitro; therefore we tested a stable agonist, 5'-(N-ethylcarboxamido)-adenosine, to explore the effect of adenosine receptor activation on dendritic cell function. We clearly show that adenosine receptor engagement affects the migratory activity of dendritic cells in three distinct settings. In human skin explant culture experiments the emigration of epidermal and dermal dendritic cells was diminished by the addition of 5'-(N-ethylcarboxamido)-adenosine. In a murine contact hypersensitivity assay 5'-(N-ethylcarboxamido)-adenosine caused a reduction in the numbers of epidermal and dermal dendritic cells arriving in the draining lymph node. In a chemotaxis assay of human dendritic cells in response to macrophage inflammatory protein 3beta (MIP-3beta)/CCL19, adenosine caused a delay in transmigration. Expression of a number of molecules involved in dendritic cell migration (CCR5, MIP-3beta/CCL19, and MDR-1) was reduced. Importantly, all other features of dendritic cells tested--phenotype, antigen uptake, cytokine production, T cell activation, and the T cell subset induction--remained unchanged. Dendritic cells carry antigens from the periphery to secondary lymphoid organs, where initiation of immune responses occurs. Increased adenosine release may modulate immune responses by delaying the encounter of antigen-loaded dendritic cells with T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.