The effect of hydrogen on the mechanical behaviour of steels is twofold: it affects the local yield strength and it accelerates material damage. On the other hand, the diffusion behaviour is influenced by the hydrostatic stress, the plastic deformation and the strain rate. This requires a coupled model of deformation, damage, hydrogen sorption and diffusion. The deformation behaviour is described by von Mises plasticity with isotropic hardening, and crack extension is simulated by a cohesive zone model. The local hydrogen concentration, which is obtained from the sorption and diffusion analysis, causes a reduction in the yield strength and the cohesive strength. Crack extension in a C(T) specimen of a ferritic steel under hydrogen charging is simulated by fully coupled finite element analyses of hydrogen kinetics and mechanical behaviour. The simulation results are compared with test results.
The effect of hydrogen on the mechanical behaviour is twofold: It affects the local yield stress and it accelerates material damage. On the other hand, the diffusion behaviour is influenced by the hydrostatic stress, the plastic deformation and the strain rate. This requires a coupled model of deformation, damage and diffusion. The deformation behaviour is described by von Mises plasticity with pure isotropic hardening, and crack extension is simulated by a cohesive zone model. The local hydrogen concentration, which is obtained from the diffusion analysis, causes a reduction of the cohesive strength. Crack extension in a C(T) specimen of a ferritic steel under hydrogen charging is simulated by fully coupled diffusion and mechanical finite element analyses with ABAQUS and the results are compared with test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.