There is still an unresolved paradox with respect to the immunomodulating role of estrogens. On one side, we recognize inhibition of bone resorption and suppression of inflammation in several animal models of chronic inflammatory diseases. On the other hand, we realize the immunosupportive role of estrogens in trauma/sepsis and the proinflammatory effects in some chronic autoimmune diseases in humans. This review examines possible causes for this paradox. This review delineates how the effects of estrogens are dependent on criteria such as: 1) the immune stimulus (foreign antigens or autoantigens) and subsequent antigen-specific immune responses (e.g., T cell inhibited by estrogens vs. activation of B cell); 2) the cell types involved during different phases of the disease; 3) the target organ with its specific microenvironment; 4) timing of 17beta-estradiol administration in relation to the disease course (and the reproductive status of a woman); 5) the concentration of estrogens; 6) the variability in expression of estrogen receptor alpha and beta depending on the microenvironment and the cell type; and 7) intracellular metabolism of estrogens leading to important biologically active metabolites with quite different anti- and proinflammatory function. Also mentioned are systemic supersystems such as the hypothalamic-pituitary-adrenal axis, the sensory nervous system, and the sympathetic nervous system and how they are influenced by estrogens. This review reinforces the concept that estrogens have antiinflammatory but also proinflammatory roles depending on above-mentioned criteria. It also explains that a uniform concept as to the action of estrogens cannot be found for all inflammatory diseases due to the enormous variable responses of immune and repair systems.
The skin and its major appendages are prominent target organs and potent sources of key players along the classical hypothalamic-pituitary axis, such as corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and alpha melanocyte stimulating hormone (alpha-MSH), and even express key steroidogenic enzymes. Therefore, it may have established local stress response systems that resemble the hypothalamic-pituitary-adrenal (HPA) axis. However, functional evidence that this is indeed the case in normal human skin in situ has still been missing. We show that microdissected, organ-cultured human scalp hair follicles respond to CRH stimulation by up-regulating proopiomelanocortin (POMC) transcription and immunoreactivity (IR) for ACTH and alpha-MSH, which must have been processed from POMC. CRH, alpha-MSH, and ACTH also modulate expression of their cognate receptors (CRH-R1, MC1-R, MC2-R). In addition, the strongest stimulus for adrenal cortisol production, ACTH, also up-regulates cortisol-IR in the hair follicles. Isolated human hair follicles secrete substantial levels of cortisol into the culture medium, and this activity is further up-regulated by CRH. CRH also modulates important functional hair growth parameters in vitro (hair shaft elongation, catagen induction, hair keratinocyte proliferation, melanin production). Finally, human hair follicles display HPA axis-like regulatory feedback systems, since the glucocorticoid receptor agonist hydrocortisone down-regulates follicular CRH expression. Thus, even in the absence of endocrine, neural, or vascular systemic connections, normal human scalp hair follicles directly respond to CRH stimulation in a strikingly similar manner to what is seen in the classical HPA axis, including synthesis and secretion of cortisol and activation of prototypic neuroendocrine feedback loops.
Abstract. Straub RH, Cutolo M, Buttgereit F, Pongratz G (University Hospital Regensburg, Regensburg, Germany; University of Genova, Genova, Italy; and Charité University Medicine Berlin, Berlin, Germany). Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases (Review). J Intern Med 2010; 267: 543-560.Energy regulation (EnR) is most important for homoeostatic regulation of physiological processes. Neuroendocrine pathways are involved in EnR. We can separate factors that provide energy-rich fuels to stores [parasympathetic nervous system (PSNS), insulin, insulin-like growth factor-1, oestrogens, androgens and osteocalcin] and those that provide energy-rich substrates to consumers [sympathetic nervous system (SNS), hypothalamic-pituitaryadrenal axis, thyroid hormones, glucagon and growth hormone]. In chronic inflammatory diseases (CIDs), balanced energy-rich fuel allocation to stores and consumers, normally aligned with circadian rhythms, is largely disturbed due to the vast fuel consumption of an activated immune system (up to 2000 kJ day )1 ). Proinflammatory cytokines such as tumour necrosis factor or interleukins 1b and 6, circulating activated immune cells and sensory nerve fibres signal immune activation to the rest of the body. This signal is an appeal for energy-rich fuels as regulators are switched on to supply energy-rich fuels ('energy appeal reaction'). During evolution, adequate EnR evolved to cope with nonlife-threatening diseases, not with CIDs (huge negative selection pressure and reduced reproduction). Thus, EnR is inadequate in CIDs leading to many abnormalities, including sickness behaviour, anorexia, hypovitaminosis D, cachexia, cachectic obesity, insulin resistance, hyperinsulinaemia, dyslipidaemia, fat deposits near inflamed tissue, hypoandrogenaemia, mild hypercortisolaemia, activation of the SNS (hypertension), CID-related anaemia and osteopenia. Many of these conditions can contribute to the metabolic syndrome. These signs and symptoms become comprehensible in the context of an exaggerated call for energy-rich fuels by the immune system. We propose that the presented pathophysiological framework may lead to new therapeutical approaches and to a better understanding of CID sequence.
Our objective was to investigate sympathetic and sensory nerve fibers in synovial tissue in rheumatoid arthritis (RA) and osteoarthritis (OA) in relation to histological inflammation and synovial cytokine and norepinephrine (NE) secretion. Immunohistochemistry was used to detect nerve fibers and inflammatory parameters. A superfusion technique of synovial tissue pieces was used to investigate cytokine and NE secretion. In RA, we detected 0.2 +/- 0.04 tyrosine hydroxylase-positive (TH-positive=sympathetic) nerve fibers/mm2 as compared to 4.4 +/- 0. 8 nerve fibers/mm2 in OA (P<0.001). In RA, there was a negative correlation between the number of TH-positive nerve fibers and inflammation index (RRank=-0.705, P=0.002) and synovial IL-6 secretion (RRank=-0.630, P=0.009), which was not found in OA. Substance P-positive (=sensory) nerve fibers were increased in RA as compared to OA (3.5+/-0.2 vs. 2.3+/-0.3/mm2, P=0.009). Despite lower numbers of sympathetic nerve fibers in RA than in OA, NE release was similar at baseline (RA vs. OA: 152+/-36 vs. 106+/-21 pg/ml, n.s.). Basal synovial NE secretions correlate with the number of TH-positive CD 163+ synovial macrophages (RA: RRank=0.622, P=0.031; OA: RRank=0.299, n.s.), and synovial macrophages have been shown to produce NE in vitro. Whereas sympathetic innervation is reduced, sensory innervation is increased in the synovium from patients with longstanding RA when compared to the synovium from OA patients. The differential patterns of innervation are dependent on the severity of the inflammation. However, NE secretion from the synovial tissue is maintained by synovial macrophages. This demonstrates a loss of the influence of the sympathetic nervous system on the inflammation, accompanied by an up-regulation of the sensory inputs into the joint, which may contribute to the maintenance of the disease.
We investigated chronic psycho-social stress effects on stress-related parameters and on pathohistological changes in the murine colon. Moreover, we aimed to reveal the involvement of adrenal glucocorticoids in chronic stress effects. Chronic subordinate colony housing (CSC, 19 d) resulted in reduced body weight gain, thymus atrophy, adrenal hypertrophy, increased plasma norepinephrine, and increased anxiety. With respect to the time course of CSC effects, CRH mRNA in the hypothalamic paraventricular nucleus, light phase corticosterone and tyrosine hydroxylase expression in colonic tissue were found to be increased, whereas tyrosine hydroxylase expression in the locus coeruleus was found to be decreased on d 2 of CSC; these parameters returned to control levels thereafter. Nevertheless, after 19 d of CSC exposure, the adrenal corticosterone responses in vivo and in vitro, and glucocorticoid sensitivity of isolated splenic cells were found to be decreased. Importantly, in CSC mice a significant histological damage of the colon was found beginning on d 14 of CSC exposure. Additionally, pro- and antiinflammatory cytokine secretion by mesenteric lymph node cells was increased after CSC exposure. Adrenalectomy before CSC at least partially prevented these chronic stress effects as reflected by less increase in proinflammatory cytokine secretion and an equal histological damage score in adrenalectomized compared with sham-operated CSC mice. In conclusion, chronic exposure to CSC alters relevant neuronal, neuroendocrine and immune functions that could be directly or indirectly involved in the damage of the histological integrity of the colon comparable with that seen during the development of colitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.