The laminar separation bubble on an SD7003 aerofoil at a Reynolds numberRe= 66000 was investigated to determine the dominant frequencies of the transition process and the flapping of the bubble. The measurements were performed with a high-resolution time-resolved particle image velocimetry (TR-PIV) system. Contrary to typical measurements performed through conventional PIV, the different modes can be identified by applying TR-PIV. The interaction between the shed vortices is analysed, and their significance for the production of turbulence is presented. In the shear layer above the bubble the generation and amplification of vortices due to Kelvin–Helmholtz instabilities is observed. It is found that these instabilities have a weak coherence in the spanwise direction. In a later stage of transition these vortices lead to a three-dimensional breakdown to turbulence.
A method to determine the three components (3C) of the velocity field in a micro volume (3D) using a single camera is proposed. The technique is based on tracking the motion of individual particles to exclude errors due to depth of correlation (DOC) and spatial averaging as in μPIV (micro particle image velocimetry). The depth position of the particles is coded by optical distortions initiated by a cylindrical lens in the optical setup. To estimate the particle positions, a processing algorithm was developed based on continuous wavelet analysis and autocorrelation. This algorithm works robustly and gives accurate results comparable to multi-camera systems (tomographic PIV, V3V). Particle tracking was applied to determine the full 3C velocity vector in the volume without the error due to spatial averaging and DOC, which are inherent limitations in μPIV due to the interrogation windows size and volume illumination. To prove the applicability, measurements were performed in a straight channel with a cross section of 500 × 500 μm 2 . The depth of the measurement volume in the viewing direction was chosen to be 90 μm in order to resolve the near-wall gradients. The three-dimensional velocity distribution of the whole channel could be resolved clearly by using wave front deformation particle tracking velocimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.