Chronic obstructive pulmonary disease (COPD) is a lung disease that is not fully reversible and one of the leading causes of morbidity and mortality in the world. Early detection and diagnosis of COPD can increase the survival rate and reduce the risk of COPD progression in patients. Currently, the primary examination tool to diagnose COPD is spirometry. However, computed tomography (CT) is used for detecting symptoms and sub-type classification of COPD. Using different imaging modalities is a difficult and tedious task even for physicians and is subjective to inter-and intra-observer variations. Hence, developing methods that can automatically classify COPD versus healthy patients is of great interest. In this paper, we propose a 3D deep learning approach to classify COPD and emphysema using volume-wise annotations only. We also demonstrate the impact of transfer learning on the classification of emphysema using knowledge transfer from a pre-trained COPD classification model.
The radiologic community is rapidly integrating a revolution that has not fully entered daily practice. It necessitates a close collaboration between computer scientists and radiologists to move from concepts to practical applications. This article reviews the current littérature on machine learning and deep neural network applications in the field of pulmonary embolism, chronic thromboembolic pulmonary hypertension, aorta, and chronic obstructive pulmonary disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.