Cell movement-for example, during embryogenesis or tumor metastasis-is a complex dynamical process resulting from an intricate interplay of multiple components of the cellular migration machinery. At first sight, the paths of migrating cells resemble those of thermally driven Brownian particles. However, cell migration is an active biological process putting a characterization in terms of normal Brownian motion into question. By analyzing the trajectories of wild-type and mutated epithelial (transformed Madin-Darby canine kidney) cells, we show experimentally that anomalous dynamics characterizes cell migration. A superdiffusive increase of the mean squared displacement, non-Gaussian spatial probability distributions, and power-law decays of the velocity autocorrelations is the basis for this interpretation. Almost all results can be explained with a fractional Klein-Kramers equation allowing the quantitative classification of cell migration by a few parameters. Thereby, it discloses the influence and relative importance of individual components of the cellular migration apparatus to the behavior of the cell as a whole. data analysis ͉ fractional dynamics ͉ non-Brownian motion N early all cells in the human body are mobile at a given time during their life cycle. Embryogenesis, wound-healing, immune defense, and the formation of tumor metastases are well known phenomena that rely on cell migration. Extensive experimental work revealed a precise spatial and temporal coordination of multiple components of the cellular migration machinery such as the actin cytoskeleton, cell-substrate and cell-cell interactions, and the activity of ion channels and transporters (1-4). These findings are the basis for detailed molecular models representing different microscopic aspects of the process of cell migration such as the protrusion of the leading edge of the lamellipodium, or actin dynamics (5). Mathematical continuum models, in contrast, focus on collective properties of the entire cell to explain requirements for the onset of motion and some typical features of cell motility (6). These models are usually limited to small spatiotemporal scales. Therefore, they provide little information about how the integration of protrusion of the lamellipodium, retraction of the rear part, and force transduction onto the extracellular matrix lead to the sustained long-term movement of the entire cell. This process is characterized by alternating phases of directed migration, changes of direction, and polarization. The coordinated interaction of these phases suggests the existence of intermittency (7) and of strong spatiotemporal correlations. It is therefore an important question whether the long-term movement of the entire cell can still be understood as a simple diffusive behavior like usual Brownian motion (8, 9) or whether more advanced concepts of dynamic modeling have to be applied (10, 11). Results and DiscussionWe performed migration experiments and analyzed the trajectories of two migrating transformed renal epithelial MadinDar...
We consider chains of one-dimensional, piecewise linear, chaotic maps with uniform slope. We study the diffusive behaviour of an initially nonuniform distribution of points as a function of the slope of the map by solving Frobenius-Perron equation. For Markov partition values of the slope, we relate the diffusion coefficient to eigenvalues of the topological transition matrix. The diffusion coefficient obtained shows a fractal structure as a function of the slope of the map. This result may be typical for a wide class of maps, such as two dimensional sawtooth maps.Comment: 4 pages, LaTeX with REVTeX, and 3 figures, Postscript, in uuencoded tar file. to appear in Phys. Rev. Let
We analyze a simple model of deterministic diffusion. The model consists of a one-dimensional array of scatterers with moving point particles. The particles move from one scatterer to the next according to a piecewise linear, expanding, deterministic map on unit intervals. The microscopic chaotic scattering process of the map can be changed by a control parameter. The macroscopic diffusion coefficient for the moving particles is well defined and depends upon the control parameter. We calculate the diffusion coefficent and the largest eigenmodes of the system by using Markov partitions and by solving the eigenvalue problems of respective topological transition matrices. For different boundary conditions we find that the largest eigenmodes of the map match the ones of the simple phenomenological diffusion equation. Our main result is that the diffusion coefficient exhibits a fractal structure as a function of the control parameter. We provide qualitative and quantitative arguments to explain features of this fractal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.