The present study describes the design of bio-pellet morphologies of the industrial working horse Aspergillus niger strains in submerged culture. The novel approach recruits the intended addition of titanate microparticles (TiSiO(4), 8 µm) to the growth medium. As tested for two recombinant strains producing fructofuranosidase and glucoamylase, the enzyme titer by the titanate-enhanced cultures in shake flasks was increased 3.7-fold to 150 U/mL (for fructofuranosidase) and 9.5-fold to 190 U/mL (for glucoamylase) as compared to the control. This could be successfully utilized for improved enzyme production in stirred tank reactors. Stimulated by the particles, the achieved final glucoamylase activity of 1,080 U/mL (fed-batch) and 320 U/mL (batch) was sevenfold higher as compared to the conventional processes. The major reason for the enhanced production was the close association between the titanate particles and the fungal cells. Already below 2.5 g/L the micromaterial was found inside the pellets, including single particles embedded as 50-150 µm particle aggregates in the center resulting in core shell pellets. With increasing titanate levels the pellet size decreased from 1,700 µm (control) to 300 µm. Fluorescence based resolution of GFP expression revealed that the large pellets of the control were only active in a 200 µm surface layer. This matches with the critical penetration depth for nutrients and oxygen typically observed for fungal pellets. The biomass within the titanate derived fungal pellets, however, was completely active. This was due a reduced thickness of the biomass layer via smaller pellets as well as the core shell structure. Moreover, also the created loose inner pellet structure enabled a higher mass transfer and penetration depths for up to 500 µm. The creation of core-shell pellets has not been achieved previously by the addition of microparticles, for example, made of talc or alumina. Due to this, the present work opens further possibilities to use microparticles for tailor-made morphology design of filamentous fungi, especially for pellet based processes which have a long and strong industrial relevance for industrial production.
Cultivation processes involving filamentous fungi have been optimised for decades to obtain high product yields. Several bulk chemicals like citric acid and penicillin are produced this way. A simple adaptation of cultivation parameters for new production processes is not possible though. Models explaining the correlation between process-dependent growth behaviour and productivity are therefore necessary to prevent long-lasting empiric test series. Yet, filamentous growth consists of a complex microscopic differentiation process from conidia to hyphae resulting in various macroscopically visible appearances. Early approaches to model this morphologic development are recapitulated in this review to explain current trends in this area of research. Tailoring morphology by adjusting process parameters is one side of the coin, but an ideal morphology has not even been found. This article reviews several reasons for this fact starting with nutrient supply in a fungal culture and presents recent advances in the investigation of fungal metabolism. It illustrates the challenge to unfold the relationship between morphology and productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.