We focus on the analysis and design of two different sliding mode observers for dynamic Takagi-Sugeno (TS) fuzzy systems. A nonlinear system of this class is composed of multiple affine local linear models that are smoothly interpolated by weighting functions resulting from a fuzzy partitioning of the state space of a given nonlinear system subject to observation. The Takagi-Sugeno fuzzy system is then an accurate approximation of the original nonlinear system. Our approach to the analysis and design of observers for Takagi-Sugeno fuzzy systems is based on extending sliding mode observer schemes to the case of interpolated multiple local affine linear models. Thus, our main contribution is nonlinear observer analysis and design methods that can effectively deal with model/plant mismatches. Furthermore, we consider the difficult case when the weighting functions in the Takagi-Sugeno fuzzy system depend on the estimated state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.