In this paper we propose a novel approach to hybrid visual steering of simulation ensembles. A simulation ensemble is a collection of simulation runs of the same simulation model using different sets of control parameters. Complex engineering systems have very large parameter spaces so a naïve sampling can result in prohibitively large simulation ensembles. Interactive steering of simulation ensembles provides the means to select relevant points in a multi-dimensional parameter space (design of experiment). Interactive steering efficiently reduces the number of simulation runs needed by coupling simulation and visualization and allowing a user to request new simulations on the fly. As system complexity grows, a pure interactive solution is not always sufficient. The new approach of hybrid steering combines interactive visual steering with automatic optimization. Hybrid steering allows a domain expert to interactively (in a visualization) select data points in an iterative manner, approximate the values in a continuous region of the simulation space (by regression) and automatically find the "best" points in this continuous region based on the specified constraints and objectives (by optimization). We argue that with the full spectrum of optimization options, the steering process can be improved substantially. We describe an integrated system consisting of a simulation, a visualization, and an optimization component. We also describe typical tasks and propose an interactive analysis workflow for complex engineering systems. We demonstrate our approach on a case study from automotive industry, the optimization of a hydraulic circuit in a high pressure common rail Diesel injection system.
Radial charts are generally considered less effective than linear charts. Perhaps the only exception is in visualizing periodical time-dependent data, which is believed to be naturally supported by the radial layout. It has been demonstrated that the drawbacks of radial charts outweigh the benefits of this natural mapping. Visualization of daily patterns, as a special case, has not been systematically evaluated using radial charts. In contrast to yearly or weekly recurrent trends, the analysis of daily patterns on a radial chart may benefit from our trained skill on reading radial clocks that are ubiquitous in our culture. In a crowd-sourced experiment with 92 non-expert users, we evaluated the accuracy, efficiency, and subjective ratings of radial and linear charts for visualizing daily traffic accident patterns. We systematically compared juxtaposed 12-hours variants and single 24-hours variants for both layouts in four low-level tasks and one high-level interpretation task. Our results show that over all tasks, the most elementary 24-hours linear bar chart is most accurate and efficient and is also preferred by the users. This provides strong evidence for the use of linear layoutseven for visualizing periodical daily patterns.
Until now a lot of visual analytics predominantly delivers qualitative results-based, for example, on a continuous color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific extensions to the well-established concept of linking&brushing in order to make the analysis results more quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation, e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in the context of two case studies, one based on meteorological data and the other one focused on data from the automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.
The interactive p-h diagram, central to cooling system design, presents multiple layers of information: user-defined desired points (in shades of red), simulated points generated by parameters predicted through deep learning (shades of blue), and scatterplots offering a dual data perspective (with lines connecting Deep Learning prediction and simulation for the same parameters). Parallel coordinates show control parameters, while box plots offer insights into numerical aggregated values. The colors in all views are consistent. Darker colors show recent iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.