In patients with diabetes mellitus and coronary artery disease, use of the sirolimus-eluting stent is associated with a decrease in the extent of late luminal loss, as compared with use of the paclitaxel-eluting stent, suggesting a reduced risk of restenosis.
Type I but not type II IFN signaling is essential for the prevention of early death due to CVB3 infection. Interestingly, neither type I or type II IFN signaling has a dramatic effect on early viral replication in the heart. However, lethal viral replication in the liver is controlled by type I IFNs. These results demonstrate that the IFN system is capable of modulating both viral pathogenicity and tissue tropism.
Recent clinical studies that investigated the efficacy of the two U.S. Food and Drug Administration-approved drug-eluting stent (DES) platforms Cypher (Cordis, Johnson and Johnson, Miami Lakes, Florida) and Taxus (Boston Scientific, Boston, Massachusetts) suggest that there are differences between both DES concerning neointimal growth. Both DES elute compounds that inhibit the cell cycle, but at different stages: Cypher stents elute sirolimus, which induces G1 cell cycle inhibition, and Taxus stents release paclitaxel, which predominantly leads to M-phase arrest. In an attempt to explain the differences observed in human studies, the properties of these stent-based compounds on critical molecular and cellular events associated with the pathophysiology of in-stent restenosis are discussed in detail with the conclusion that both sirolimus and paclitaxel are different in their pleiotropic anti-restenotic effects. This may be in part responsible for the differences observed in recent clinical studies.
Numerous studies have implicated Coxsackievirus in acute and chronic heart failure. Although enteroviral nucleic acids have been detected in selected patients with dilated cardiomyopathy, the significance of such persistent nucleic acids is unknown. To investigate the mechanisms by which restricted viral replication with low level expression of Coxsackieviral proteins may be able to induce cardiomyopathy, we generated transgenic mice which express a replication-restricted full-length Coxsackievirus B3 (CVB3) cDNA mutant (CVB3 ⌬ VP0) in the heart driven by the cardiac myocyte-specific myosin light chain-2v (MLC-2v) promoter. CVB3 ⌬ VP0 was generated by mutating infectious CVB3 cDNA at the VP4/VP2 autocatalytic cleavage site from AsnSer to Lys-Ala. Cardiac-specific expression of this cDNA leads to synthesis of positive-and negative-strand viral RNA in the heart without formation of infectious viral progeny. Histopathologic analysis of transgenic hearts revealed typical morphologic features of myocardial interstitial fibrosis and in some cases degeneration of myocytes, thus resembling dilated cardiomyopathy in humans. There was also an increase in ventricular atrial natriuretic factor mRNA levels, demonstrating activation of the embryonic program of gene expression typical of ventricular hypertrophy and failure. Echocardiographic analysis demonstrated the presence of left ventricular dilation and decreased systolic function in the transgenic mice compared with wild-type littermates, evidenced by increased ventricular end-diastolic and end-systolic dimensions and decreased fractional shortening. Analysis of isolated myocytes from transgenic mice demonstrate that there is defective excitation-contraction coupling and a decrease in the magnitude of isolated cell shortening. These data demonstrate that restricted replication of enteroviral genomes in the heart can induce dilated cardiomyopathy with excitation-contraction coupling abnormalities similar to pressure overload models of dilated cardiomyopathy. (
Both BP and PF stents have a 1-year safety profile similar to that of the PP stent. Whereas the PF stent provided an inferior efficacy, the BP stent is at least as effective as the PP stent in terms of anti-restenotic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.