High animal and plant richness in tropical rainforest communities has long intrigued naturalists. It is unknown if similar hyperdiversity patterns are reflected at the microbial scale with unicellular eukaryotes (protists). Here we show, using environmental metabarcoding of soil samples and a phylogeny-aware cleaning step, that protist communities in Neotropical rainforests are hyperdiverse and dominated by the parasitic Apicomplexa, which infect arthropods and other animals. These host-specific parasites potentially contribute to the high animal diversity in the forests by reducing population growth in a density-dependent manner. By contrast, too few operational taxonomic units (OTUs) of Oomycota were found to broadly drive high tropical tree diversity in a host-specific manner under the Janzen-Connell model. Extremely high OTU diversity and high heterogeneity between samples within the same forests suggest that protists, not arthropods, are the most diverse eukaryotes in tropical rainforests. Our data show that protists play a large role in tropical terrestrial ecosystems long viewed as being dominated by macroorganisms.S ince the works of early naturalists such as von Humboldt and Bonpland 1 , we have known that animal and plant communities in tropical rainforests are exceedingly species rich. For example, one hectare can contain more than 400 tree species 2 and one tree can harbour more than 40 ant species 3 . This hyperdiversity of trees has been partially explained by the Janzen-Connell model 4,5 , which hypothesizes that host-specific predators and parasites reduce plant population growth in a density-dependent manner 6,7 . Sampling up in the tree canopies and below on the ground has further led to the view that arthropods are the most diverse eukaryotes in tropical rainforests 8,9 .The focus on eukaryotic macroorganisms in these studies is primarily because they are familiar and readily observable to us. We do not know whether the less familiar and less readily observable protists-microbial eukaryotes that are not animals, plants or fungi 10 -inhabiting these same ecosystems exhibit similar diversity patterns. To evaluate if macroorganismic diversity patterns are reflected at the microbial scale with protists, we conducted an environmental DNA metabarcoding study by sampling soils in 279 locations in a variety of lowland Neotropical forest types in La Selva Biological Station, Costa Rica, Barro Colorado Island, Panama and Tiputini Biodiversity Station, Ecuador. This metabarcoding approach has the power to uncover known and new taxa on a massive scale 11 . By amplifying DNA extracted from the soils with broadly targeted primers for the V4 region of 18S rRNA and sequencing it using the Illumina MiSeq platform, we were able to detect most eukaryotic lineages, and assess the diversity and relative dominance of free-living and parasitic lineages.
Leaf-cutting ants such as Acromyrmex octospinosus live in obligate symbiosis with fungi of the genus Leucoagaricus, which they grow with harvested leaf material. The symbiotic fungi, in turn, serve as a major food source for the ants. This mutualistic relation is disturbed by the specialized pathogenic fungus Escovopsis sp., which can overcome Leucoagaricus sp. and thus destroy the ant colony. Microbial symbionts of leaf-cutting ants have been suggested to protect the fungus garden against Escovopsis by producing antifungal compounds [Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701-704.]. To date, however, the chemical nature of these compounds has remained elusive. We characterized 19 leaf-cutting ant-associated microorganisms (5 Pseudonocardia, 1 Dermacoccus, and 13 Streptomyces) from 3 Acromyrmex species, A. octospinosus, A. echinatior, and A. volcanus, using 16S-rDNA analysis. Because the strain Streptomyces sp. Ao10 proved highly active against the pathogen Escovopsis, we identified the molecular basis of its antifungal activity. Using bioassay-guided fractionation, high-resolution electrospray mass spectrometry (HR-ESI-MS), and UV spectroscopy, and comparing the results with an authentic standard, we were able identify candicidin macrolides. Candicidin macrolides are highly active against Escovopsis but do not significantly affect the growth of the symbiotic fungus. At least one of the microbial isolates from each of the 3 leaf-cutting ant species analyzed produced candicidin macrolides. This suggests that candicidins play an important role in protecting the fungus gardens of leaf-cutting ants against pathogenic fungi.Acromyrmex ͉ antifungal agent ͉ symbionts ͉ Attini ͉ polyketides
Leaf-cutting ants cultivate the fungus Leucoagaricus gongylophorus, which serves as a major food source. This symbiosis is threatened by microbial pathogens that can severely infect L. gongylophorus. Microbial symbionts of leaf-cutting ants, mainly Pseudonocardia and Streptomyces, support the ants in defending their fungus gardens against infections by supplying antimicrobial and antifungal compounds. The ecological role of microorganisms in the nests of leaf-cutting ants can only be addressed in detail if their secondary metabolites are known. Here, we use an approach for the rapid identification of established bioactive compounds from microorganisms in ecological contexts by combining phylogenetic data, database searches, and liquid chromatography electrospray ionisation high resolution mass spectrometry (LC-ESI-HR-MS) screening. Antimycins A 1 -A 4 , valinomycins, and actinomycins were identified in this manner from Streptomyces symbionts of leaf-cutting ants. Matrix-assisted laser desorption ionization (MALDI) imaging revealed the distribution of valinomycin directly on the integument of Acromyrmex echinatior workers. Valinomycins and actinomycins were also directly identified in samples from the waste of A. echinatior and A. niger leaf-cutting ants, suggesting that the compounds exert their antimicrobial and antifungal potential in the nests of leaf-cutting ants. Strong synergistic effects of the secondary metabolites produced by ant-associated Streptomyces were observed in the agar diffusion assay against Escovopsis weberi. Actinomycins strongly inhibit soil bacteria as well as other Streptomyces and Pseudonocardia symbionts. The antifungal antimycins are not only active against pathogenic fungi but also the garden fungus L. gongylophorus itself. In conclusion, secondary metabolites of microbial symbionts of leaf-cutting ants contribute to shaping the microbial communities within the nests of leaf-cutting ants.
Herbivory has been identified as a potent evolutionary force, but its ecological impacts have been frequently underestimated. Leafcutting ants represent one of the most important herbivores of the Neotropics and offer an interesting opportunity to address the role played by herbivorous insects through a perspective that embraces population-to ecosystem-level effects. Here we: (1) qualitatively summarize the multiple ways leaf-cutting ants interact with food plants and their habitats and elucidate the ultimate outcome of such interactions at multiple organization levels; (2) update our understanding of leaf-cutting ant-promoted disturbance regimes; and (3) examine potential ecological roles by leaf-cutting ants within the context of human-modified landscapes to guide future research agendas. First, we find that leaf-cutting ants show that some herbivorous insects are able to generate ecologically important disturbance regimes via non-trophic activities. Second, impacts of leaf-cutting ants can be observed at multiple spatio-temporal scales and levels of biological organization. Third, ecosystem-level effects from leaf-cutting ants are ecosystem engineering capable not only of altering the abundance of other organisms, but also the successional trajectory of vegetation. Finally, effects of leaf-cutting ants are context-dependent, speciesspecific, and synergistically modulated by anthropogenic interferences. Future research should examine how leaf-cutting ants respond to deforestation and influence remaining vegetation in human-modified landscapes. By promoting either heterogeneity or homogeneity, leaf-cutting ants operate not only as agricultural pests but also as ecological key players.Abstract in Portuguese is available in the online version of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.