Tessellation methods are a relatively new approach for modeling the structure of a material. In this paper, such structures are interpreted as sphere packing models, where molecules and atoms represent spheres of equal or different size. Based on the review of the literature, it is shown that the tessellation approach is a powerful method for modeling and simulating such structures with desirable metric and topological properties. Two basic tessellation methods are considered more in detail: the Delaunay tessellation and the Voronoi diagram in Laguerre geometry, as well as some of their generalizations. The principal concepts of both tessellation methods are briefly explained for a better understanding of the application details. It is noted that packing models created by tessellation methods are not based on the use of the gravity camp effect, which is a difference to numerical and mathematic programming modeling approaches. Therefore, tessellation methods permit the development of structures without taking into account the gravitation, what is important for modeling the structure on the microscopic and nano levels, where the influence of the gravitation is studied insufficiently. A review of the related literature is given, focusing on the details of the tessellation method and the particle size distribution.
This paper summarize idealized theoretical studies of bicomponent particle packing parameters, affecting the phase and pore structure of obtained materials. Such a kind of analysis can be used both in theoretical consideration of material engineering problems and in chemical industry. The effects of key variables on the relationship between packing fraction and particle size were re-examined for general application. Potential applications of these results include synthesis of nanopaterials, adsorbents, catalyst carriers and packing for chromatographic columns. Directions for future research are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.