Chemical differentiation of magma on Earth occurs through physical separation of liquids and crystals. The mechanisms of this separation still remain elusive due to the lack of information on solidification fronts in plutonic magmatic systems. Here, we present records of fossilized solidification fronts from massive magnetitites of the Bushveld Complex in South Africa, obtained by two-dimensional geochemical mapping on field outcrops. The chemical zoning patterns of solidification fronts indicate that nucleation and crystallization occur directly at the chamber floor and result in near-perfect fractionation due to convective removal of a compositional boundary layer from in situ growing crystals. Our data precludes the existence of thick crystal mushes during the formation of massive magnetitites, thus providing no support for the recent paradigm that envisages only crystal-rich and liquid-poor mushy reservoirs in the Earth’s crust.
The classical paradigm of the ‘big magma tank’ chambers in which the melt differentiates, is replenished, and occasionally feeds the overlying volcanos has recently been challenged on various grounds. An alternative school of thought is that such large, long-lived and largely molten magma chambers are transient to non-existent in Earth’s history. Our study of stratiform chromitites in the Bushveld Complex—the largest magmatic body in the Earth’s continental crust—tells, however, a different story. Several chromitites in this complex occur as layers up to 2 m in thickness and more than 400 kms in lateral extent, implying that chromitite-forming events were chamber-wide phenomena. Field relations and microtextural data, specifically the relationship of 3D coordination number, porosity and grain size, indicate that the chromitites grew as a 3D framework of touching chromite grains directly at the chamber floor from a basaltic melt saturated in chromite only. Mass-balance estimates imply that a few km thick column of this melt is required to form each of these chromitite layers. Therefore, an enormous volume of melt appears to have been involved in the generation of all the Bushveld chromitite layers, with half of this melt being expelled from the magma chamber. We suggest that the existence of thick and laterally extensive chromitite layers in the Bushveld and other layered intrusions supports the classical paradigm of big, albeit rare, ‘magma tank’ chambers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.