Material design and synthesis have made tremendous impacts in the scientific community by unleashing a material's true potential via enhanced properties and applications. Over the years, advanced synthetic strategies have emerged and have been expanded to not only control the size and shape of nanoparticles but also to control the preferential growth of surface facets, paving the way for new materials with facet-dependent properties. Metal oxide (111) facets as compared to their potentially more stable counterpart facets (e.g., ( 100), ( 110)) have recently exhibited enriched chemical properties owing to their unique surface arrangement. As a result, metal oxide (111) faceted surfaces have been used in applications such as catalysis, sorbents, batteries, etc. This review aims to provide a perspective on the synthetic processes utilized to expose (111) surfaces and the governing factors/ synthetic parameters that expose them across various metal oxides of different crystal structures as well as some of their applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.