The potential horizontal transfer ofnonrepellent termiticides has become an important paradigm to control termites in recent years. In this study, 14C-radiolabeled fipronil was used in a series of laboratory experiments to demonstrate the extent and ability of termites to transfer lethal amounts of fipronil to unexposed nestmates. Fipronil is an active and nonrepellent termiticide against western subterranean termites, Reticulitermes hesperus Banks, on sand at relevant doses. It exhibited delayed toxicity with the lowest LD50 approximately 0.2 ng/termite expressed between day 4 and 7. Both continuous and brief exposures to fipronil-treated sand seriously impaired the termite's ability to move and respond to a dodecatrienol trail, limiting potential horizontal transfer. In tunneling studies, fipronil prevented termite tunneling at concentrations as low as 0.5 ppm and was nonrepellent even at 500 ppm. Greater than 90% mortality was recorded by day 7 with concentrations ranging from 0.5 to 500 ppm. There was a linear relationship between the time of exposure and uptake of [14C]fipronil when termites were continuously exposed to 0.5, 1.0, and 5.0 ppm for 24 h. However, uptake discontinued when the termites were immobilized. Maximum transfer of fipronil from donors to recipients occurred within the first 24 h. Fipronil was transferred by body contact and trophallaxis did not play a major role in horizontal transfer. In successive transfer studies, there was not enough fipronil on recipients for them to serve as secondary donors and kill other termites. In a linear arena study, there was an inverse relationship between the amount offipronil on dead termites and their distance from the treated zone. Maximum mortality was observed within 1.5 m from the treated zone. Results in our laboratory studies suggest that horizontal transfer was not a major factor contributing to the efficacy of fipronil in the field.
Chlorfenapyr is a slow-acting insecticide against western subterranean termite, Reticulitermes hesperus Banks, when applied to sand. The LD50 at day 7 for workers is 29.98 ng per termite and considerably higher than that of chlorpyrifos (14.01), cypermethrin (3.21), and fipronil (0.16). Brief exposures to sand treated with chlorfenapyr resulted in dose-dependent mortality over a broad range of concentrations. Brief 1-h exposures to > or =75 ppm provided >88% kill of termites at day 7. Chlorfenapyr deposits did not repel termites, even at 300 ppm. Termites tunneled from 0.1 to 1.8 cm into sand treated with 10- to 300-ppm chlorfenapyr deposits, resulting in > or =70% mortality. Within 1 h after being exposed to 50 ppm chlorfenapyr, approximately 17% of the termites exhibited impaired responses to synthetic trail pheromone. By 4 h, nearly 60% of the workers were not able to follow a 10 fg/cm pheromone trail. There was a direct linear relationship of the uptake of [14C]chlorfenapyr as concentration and duration of exposure increased. The percentage of chlorfenapyr transferred to recipients varied from 13.3 to 38.4%. Donors exposed for 1 h transferred a greater percentage of chlorfenapyr than did donors exposed for 4 h. A 1-h exposure on 100-ppm deposits provided sufficient uptake to kill 100% of the donors and sufficient transfer to kill 96% of the recipients. There was not enough transfer for recipients to serve as secondary donors and kill other termites. Horizontal transfer is limited to contact with the original donor and by the decreased mobility of workers within 4-8 h after exposure to treated sand. The effectiveness of chlorfenapyr barrier treatments is primarily due to its nonrepellency and delayed toxicity.
Chlorfenapyr is a slow-acting insecticide against western subterranean termite, Reticulitermes hesperus Banks, when applied to sand. The LD50 at day 7 for workers is 29.98 ng per termite and considerably higher than that of chlorpyrifos (14.01), cypermethrin (3.21), and fipronil (0.16). Brief exposures to sand treated with chlorfenapyr resulted in dose-dependent mortality over a broad range of concentrations. Brief 1-h exposures to > or =75 ppm provided >88% kill of termites at day 7. Chlorfenapyr deposits did not repel termites, even at 300 ppm. Termites tunneled from 0.1 to 1.8 cm into sand treated with 10- to 300-ppm chlorfenapyr deposits, resulting in > or =70% mortality. Within 1 h after being exposed to 50 ppm chlorfenapyr, approximately 17% of the termites exhibited impaired responses to synthetic trail pheromone. By 4 h, nearly 60% of the workers were not able to follow a 10 fg/cm pheromone trail. There was a direct linear relationship of the uptake of [14C]chlorfenapyr as concentration and duration of exposure increased. The percentage of chlorfenapyr transferred to recipients varied from 13.3 to 38.4%. Donors exposed for 1 h transferred a greater percentage of chlorfenapyr than did donors exposed for 4 h. A 1-h exposure on 100-ppm deposits provided sufficient uptake to kill 100% of the donors and sufficient transfer to kill 96% of the recipients. There was not enough transfer for recipients to serve as secondary donors and kill other termites. Horizontal transfer is limited to contact with the original donor and by the decreased mobility of workers within 4-8 h after exposure to treated sand. The effectiveness of chlorfenapyr barrier treatments is primarily due to its nonrepellency and delayed toxicity.
Indoxacarb, a sodium channel-blocking insecticide, has been in widespread use for German cockroach control in the United States since 2006. A two-tiered indoxacarb susceptibility monitoring strategy was previously developed as a first step toward determining indoxacarb susceptibility levels in German cockroach field populations. This strategy entails: (tier 1) testing field-collected populations in vial bioassays at two diagnostic concentrations; and (tier 2) testing populations at three diagnostic doses in oral (feeding) bioassays with treated bait matrix. In the current study the two-tiered technique was implemented to evaluate field (n = 14) and susceptible laboratory (n = 2) strains collected from 13 different U.S. locations. Our hypothesis was that at least some of the field-collected populations would display significant survivorship in both bioassays relative to susceptible laboratory populations. In agreement with this hypothesis, significantly reduced susceptibility was detected in 13 and 7 field strains with vial and feeding bioassays, respectively. In general, the lower number of strains displaying reduced susceptibility in feeding bioassays (seven strains) supports previous findings that indoxacarb is more toxic via ingestion. Although these findings suggest a reduced risk for resistance selection via feeding on indoxacarb-containing baits, they also suggest a need for proactive resistance management with respect to both spray and bait products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.