The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.
We present an optoelectronic switch for functional plasmonic circuits based on active control of Surface Plasmon Polaritons (SPPs) at degenerate PN+-junction interfaces. Self-consistent multi-physics simulations of the electromagnetic, thermal and IV characteristics of the device have been performed. The lattice matched Indium Gallium Arsenide (In0.53Ga0.47As) is identified as a better semiconductor material compared to Si for the practical implementation of the proposed optoelectronic switch providing higher optical confinement, reduced size and faster operation. The optimal device is shown to operate at signal modulation surpassing −100 dB, responsivity in excess of −600 dB·V−1 and switching rates up to 50 GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices.
We demonstrate electrical modulation of plasmonic interfaces in semiconductor p-n++ junctions fabricated from both III–V and Si materials. Junction diodes are grown/fabricated, consisting of degenerately doped n-type material and heavily doped p-type material, where the n++ semiconductor acts as a plasmonic material capable of supporting infrared propagating surface plasmon polaritons. Devices were characterized electrically and optically, and we achieved tuning of the reflectivity under applied bias with amplitude reaching 1.5% in mid-IR wavelengths. We developed a model of electrical carrier injection at the degenerately doped interface, which we used to model the bias-dependent optical properties of the system. A strong agreement between our model and experimental results is demonstrated. The presented devices offer the opportunity for electrical modulation of propagating plasmonic modes in an all-semiconductor system.
Purpose Selective laser melting (SLM) is an advanced rapid prototyping or additive manufacturing technology that uses high power density laser to fabricate metal/alloy components with minimal geometric constraints. The SLM process is multi-physics in nature and its study requires development of complex simulation tools. The purpose of this paper is to study – for the first time, to the best of the authors’ knowledge – the electromagnetic wave interactions and thermal processes in SLM based dense powder beds under the full-wave formalism and identify prospective metal powder bed particle distributions that can substantially improve the absorption rate, SLM volumetric deposition rate and thereby the overall build time. Design/methodology/approach We present a self-consistent thermo-optical model of the laser-matter interactions pertaining to SLM. The complex electromagnetic interactions and thermal effects in the dense metal powder beds are investigated by means of full-wave finite difference simulations. The model allows for accurate simulations of the excitation of gap, bulk and surface electromagnetic resonance modes, the energy transport across the particles, time dependent local permittivity variations under the incident laser intensity, and the thermal effects (joule heating) due to electromagnetic energy dissipation. Findings Localized gap and surface plasmon polariton resonance effects are identified as possible mechanisms toward improved absorption in small and medium size titanium powder beds. Furthermore, the observed near homogeneous temperature distributions across the metal powders indicates fast thermalization processes and allows for development of simple analytical models to describe the dynamics of the SLM process. Originality/value To the best of the authors’ knowledge, for the first time the electromagnetic interactions and thermal processes with dense powder beds pertaining to SLM processes are investigated under full-wave formalism. Explicit description is provided for important SLM process parameters such as critical laser power density, saturation temperature and time to melt. Specific guidelines are presented for improved energy efficiency and optimization of the SLM process deposition rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.