Organic Electrochemical Transistors are versatile sensors that became essential for the field of organic bioelectronics. However, despite their importance, an incomplete understanding of their working mechanism is currently precluding a targeted design of Organic Electrochemical Transistors and it is still challenging to formulate precise design rules guiding materials development in this field. Here, it is argued that current capacitive device models neglect lateral ion currents in the transistor channel and therefore fail to describe the equilibrium state of Organic Electrochemical Transistors. An improved model is presented, which shows that lateral ion currents lead to an accumulation of ions at the drain contact, which significantly alters the transistor behavior. Overall, these results show that a better understanding of the interface between the organic semiconductor and the drain electrode is needed to reach a full understanding of Organic Electrochemical Transistors.
Organic electrochemical transistors (OECTs) operate at very low voltages, transduce ions into electronic signals, and reach extremely large transconductance values, making them ideally suited for bio-sensing applications. However, despite their promising performance, the dependence of their maximum transconductance on device geometry and applied voltages are not correctly captured by current capacitive device models. Here, current scaling laws are revised in the light of a recently developed 2D device model that adequately accounts for drift and diffusion of ions inside the polymer channel. It is shown that the maximum transconductance of the devices is found at the transition between the depletion and accumulation region of the transistors, which as well provides an explanation for the observed shift of the transconductance peak with geometric dimensions and the drain potential. Overall, the results provide a better understanding of the working mechanisms of OECTs, and facilitate design rules to optimize OECT performance further.
A fast response of organic electrochemical transistors (OECTs) to electrical or chemical changes is essential for a widespread acceptance of this technology. However, finding design rules for fast switching OECTs is complicated by the fact that current transient device models are highly simplified and rely on a 1D approximation of the device that neglects details of the ion and hole concentration inside the transistor channel. To improve the understanding of transient processes limiting the speed of OECTs, a 2D drift-diffusion model is presented and experimentally validated. It is shown that switching is strongly influenced by lateral ion currents that are neglected in previous models. A consistent treatment of these currents leads to a dependency of the time constants on the applied drain potential and a complex dependency of the response time constants on the detailed device geometry. In addition to an improved understanding of the transient response of OECTs, the results discussed here highlight the challenges in properly characterizing switching time constants of OECTs, and reinforce the necessity to ensure that switching is measured between two steady-state conditions, and not between transient states.
Faux‐hawk fullerenes are promising candidates for high‐performance organic field‐effect transistors (OFETs). They show dense molecular packing and high thermal stability. Furthermore, in contrast to most other C60 derivates, functionalization of the fullerene core by the fluorinated group C6F4CF2 does not increase their lowest unoccupied orbital position, which allows the use of air‐stable molecular n‐dopants to optimize their performance. The influence of n‐doping on the performance of OFETs based on the faux‐hawk fullerene 1,9‐C60(cyclo‐CF2(2‐C6F4)) (C60FHF) is studied. An analytic model for n‐doped transistors is presented and used to clarify the origin of the increase in the subthreshold swing usually observed in doped OFETs. It is shown that the increase in subthreshold swing can be minimized by using a bulk dopant layer at the gate dielectric/C60FHF layer instead of a mixed host:dopant layer. Following an optimization of the OFETs, an average electron mobility of 0.34 cm2 V−1 s−1, a subthreshold swing below 400 mV dec−1 for doped transistors, and a contact resistance of 10 kΩ cm is obtained, which is among the best performance for fullerene based n‐type semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.