Nano-systems have shown promoting results and significant progress in drug delivery and biomedical applications. However, control and targeted delivery of drugs or genes are limited due to their physicochemical and...
Nanoparticles of cyclotrimethylenetrinitramine (RDX) were prepared by a simple re‐precipitation method using acetone as solvent and water as the antisolvent. The effect of changing experimental parameters such as ratio of solvent to antisolvent, temperature of antisolvent during injection and concentration of solution on particle size and morphology of RDX was systematically studied. The size of the particles was characterized using dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM). The mean particle size of the RDX nanoparticles according to FESEM analysis ranged from 40 nm to 230 nm under different conditions of preparation. The UV/Vis absorption maximum of nano‐RDX was found to be blue shifted when compared to the absorption maximum for bulk‐RDX. Powder X‐ray diffraction (XRD) results showed that RDX nanoparticles precipitated in stable α‐crystalline form. Fourier transform infrared (FTIR) spectroscopy was used to characterize the chemical nature of the nano‐RDX. Thermal characterization of the RDX‐nanoparticles was done using simultaneous thermogravimetric analysis coupled with differential scanning calorimetry (TGA‐DSC).
Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBP) are among the most prescribed drugs across the globe. However, most NSAIDs are insoluble in water leading them to have poor bioavailability and erratic absorption. Moreover, NSAIDs such as IBP and ketoprofen (KP) have to be administered very frequently due to their short plasma half-life leading to side effects. Controlled release formulations of IBP, KP and nabumetone (NBT) based on solid lipid nanoparticles (SLNs) were successfully synthesised in the present study to solve the above-mentioned challenges that are associated with NSAIDs. SLNs were prepared in two steps; hot-melt homogenization followed by sonication to formulate SLNs with spherical morphology. While capmul® GMS-50K (capmul) was used as the lipid due to the high solubility of the studied drugs in it, gelucire® 50/13 (gelucire) was used as the surfactant. It was found that particle size was directly proportional to drug concentration and inversely proportional to surfactant concentration, volume of water added and temperature of water. Ultrasonication in a pulse mode with optimum duration of 15min was essential to obtain smaller nanoparticles through the formation of a nanoemulsion. Drug loaded SLNs with small particle size and narrow size distribution with good solid loading, encapsulation efficiency and drug loading percentage could be prepared using the optimised conditions. SLNs prepared at the optimised condition were characterized thoroughly by using different techniques such as dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The cytotoxicity results showed that the prepared SLNs are non-toxic to Raw cell line. The drugs IBP, KP and NBT showed 53, 74 and 69% of percentage entrapment efficiency with drug loading of 6, 2 and 7% respectively. Slow, steady and sustained drug release was observed from the SLNs for over 6days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.