Generally, inward and outward effects are huge and prime in the rotating components. Based on the working environments of a rotor, the complexity is increased furthermore. Similarly, this work also deals the complicated problem, which is fatigue life estimation of Marine Vehicles’ propeller for different lightweight materials under given Ocean environments by using Ansys Fluent 16.2. The conceptual design of the ship propeller is modeled with the help of CATIA. Fatigue life estimation on the rotor is a key and complex output of this work, so advanced methodology is mandatory for computation. For that purpose, the following advanced methodology has been implemented for this work, which is Hydro Structural Interaction (HSI) and Moving Reference Frame (MRF) techniques are associated in Computational Fluid Dynamics (CFD). Hydro-Fluid properties such as density and operating pressure are used as per the working vehicles’ environment, which has been easily, defined in Ansys Fluent 17.2. Thus this computational platform is perfect to handle hydrodynamic simulations, even though the gird convergence study is conducted for the better outcomes. In the case of structural simulation, the existing materials such as Aluminium alloy and Stainless Steel are used for fatigue life estimation under HSI loading conditions. Finally, the fatigue life estimation of Marine Vehicles’ propeller is extended for composite materials to compare the life of a rotor. Both the Hydrostatic and Hydrodynamic loading conditions are tested on Aquatic Vehicle’s rotor and thereby the suitable material is chosen and given to the future input for real-time applications.
This paper presents the design calculations, implementations, and multi-engineering based computational constructions of an unmanned amphibious vehicle (UAmV) which efficiently travels underwater to detect and collect deep-sea minerals for investigations, as well as creative usage purposes. The UAmV is expected to operate at a 300 m depth from the water surface. The UAmV is deployed above the water surface near to the approximate target location and swims underwater, checking the presence of various mining, then extracts them using a unique mechanism and stores them in an inimitable fuselage location. Since this proposed UAmV survives in deep-sea regions, the design construction of this UAmV is inspired by hydrodynamic efficient design-based fish, i.e., Rhinaancylostoma. Additionally, standard analytical approaches are followed and, subsequently, the inimitable components such as wing, stabilizers, propellers, and mining storage focused fuselage are calculated. The computational analyses such as hydrodynamic investigations and vibrational investigations were carried out with the help of ANSYS Workbench. The hydrodynamic pressures at various deployment regions were estimated and thereafter the vibrational outcomes of UAmVs were captured for various lightweight materials. The computed outcomes were imposed in the analytical approach and thereby the electrical energy generations by the UAmV’s components were calculated. Finally, the hydrodynamic efficient design and best material were picked, which provided a path to further works on the execution of the focused mission. Based on the low drag generating design profile and high electrical energy induction factors, the optimizations were executed on this work, and thus the needful, as well as suitable UAmV, was finalized for targeted real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.