Laminar flow correlations for f and Num are developed based on experimental data for water and ethylene glycol, with tape inserts of three different twist ratios. The uniform wall temperature condition is considered, which typifies practical heat exchangers in the chemical and process industry. These and other available data are analyzed to devise flow regime maps that characterize twisted-tape effects in terms of the dominant enhancement mechanisms. Depending upon flow rates and tape geometry, the enhancement in heat transfer is due to the tube partitioning and flow blockage, longer flow path, and secondary fluid circulation; fin effects are found to be negligible in snug- to loose-fitting tapes. The onset of swirl flow and its intensity is determined by a swirl parameter, Sw=Resw/y, that defines the interaction between viscous, convective inertia, and centrifugal forces. Buoyancy-driven free convection that comes into play at low flow rates with large y and ΔTw is shown to scale as Gr/Sw2≫ 1. These parameters, along with numerical baseline solutions for laminar flows with y = ∞, are incorporated into correlations for f and Num by matching the appropriate asymptotic behavior. The correlations describe the experimental data within ±10 to 15 percent, and their generalized applicability is verified by the comparison of predictions with previously published data.
Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with β = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with β = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 104 regime, data for Nu and f are presented. The results show significant effects of both the chevron angle β and surface area enlargement factor φ. As β increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing φ also has a similar, though smaller effect. Based on experimental data for Re a 7000 and 30 deg ≤ β ≤ 60 deg, predictive correlations of the form Nu = C1,(β) D1(φ) Rep1(β)Pr1/3(μ/μw)0.14 and f = C2(β) D2(φ) Rep2(β) are devised. Finally, at constant pumping power, and depending upon Re, β, and φ, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.
Thermal-hydraulic design correlations are developed to predict isothermal f and Nu for in-tube, turbulent flows with twisted-tape inserts. Experimental data taken for water and ethylene glycol, with y = 3.0, 4.5, and 6.0, are analyzed, and various mechanisms attributed to twisted tapes are identified. Tube blockage and tape-induced vortex mixing are the dominant phenomena that result in increased heat transfer and pressure drop; for loose- to snug-fitting tapes, the fin effects are insignificant. The limiting case of a straight tape insert correlates with the hydraulic-diameter-based smooth tube equation. Tape twist effects are thus isolated by normalizing the data with the asymptotic predictions for y = ∞, and the swirl effects are found to correlate with Re and l/y. The validity of the final correlations is verified by comparing the predictions with previously published data, which include both gases and liquids, under heating and cooling conditions and a wide range of tape geometries, thereby establishing a very generalized applicability. Finally, correlations for laminar (presented in the companion Part I paper) and turbulent flows are combined into single, continuous equations. For isothermal f, the correlation describes most of the available data for laminar-transition-turbulent flows within ±10 percent. For Nu, however, a family of curves is needed due to the nonunique nature of laminar-turbulent transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.