Dihydroxyacetone (DHA) is a three‐carbon sugar that is the active ingredient in sunless tanning products and a by‐product of electronic cigarette (e‐cigarette) combustion. Increased use of sunless tanning products and e‐cigarettes has elevated exposures to DHA through inhalation and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a product of fructose metabolism. Recent reports have suggested metabolic imbalance and cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA on human health is currently under‐investigated. We propose that exogenous exposures to DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress, mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line and animal model exposures to fructose to highlight similarities in the effects produced by exogenous exposures to DHA. Given the long‐term health consequences of fructose exposure, this review emphasizes the pressing need to further examine DHA exposures from sunless tanning products and e‐cigarettes.
Minimally invasive alternatives to traditional prostate surgery are increasingly utilized to treat benign prostatic hyperplasia and localized prostate cancer in select patients. Advantages of these treatments over prostatectomy include lower risk of complication, shorter length of hospital stay, and a more favorable safety profile. Multiparametric magnetic resonance imaging (mpMRI) has become a widely accepted imaging modality for evaluation of the prostate gland and provides both anatomical and functional information. As prostate mpMRI and minimally invasive prostate procedure volumes increase, it is important for radiologists to be familiar with normal post-procedure imaging findings and potential complications. This paper reviews the indications, procedural concepts, common post-procedure imaging findings, and potential complications of prostatic artery embolization, prostatic urethral lift, irreversible electroporation, photodynamic therapy, high-intensity focused ultrasound, focal cryotherapy, and focal laser ablation.
Salmonella Outer Membrane Vesicles (OMVs) were recently shown to inhibit P22 bacteriophage infection. Interestingly, we identify 31 recurrent tRFs abundantly expressed by Salmonella enterica serovar Typhimurium and find these tRFs are highly complementary to known Salmonella enterica-infecting bacteriophage (17 averaging 97.4% complementarity over 22.9 nt) and specifically enriched in S. Typhimurium OMVs. Most notably, tRNA-Thr-CGT-1-1, 44-73, bears 100% complementary over its entire 30 nt length to 29 distinct Salmonella enterica-infecting bacteriophage including P22. Importantly, we find inhibiting this tRF in secreted OMVs improves P22 infectivity in a dose dependent manner whereas raising OMV tRF levels conversely inhibits P22. Furthermore, we find P22 pre-incubation with OMVs isolated from naïve S. Typhimurium, rescues the ability of S. Typhimurium depleted of tRNA-Thr-CGT-1-1, 44-73 tRF to defend against P22. Collectively, these experiments confirm tRFs secreted in S. Typhimurium OMVs are directly involved with and required for the ability of OMVs to defend against bacteriophage predation. As we find the majority of OMV tRFs are highly complementary to an array of known Salmonella enterica-infecting bacteriophage, we suggest OMV tRFs may primarily function as a broadly acting, previously uncharacterized ancient antiviral defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.