We have characterized comprehensive transcript and proteomic profiles of cell lines corresponding to normal breast (MCF10A), noninvasive breast cancer (MCF7) and invasive breast cancer (MDA-MB-231). The transcript profiles were first analysed by a modified protocol for representational difference analysis (RDA) of cDNAs between MCF7 and MDA-MB-231 cells. The majority of genes identified by RDA showed nearly complete concordance with microarray results, and also led to the identification of some differentially expressed genes such as lysyl oxidase, copper transporter ATP7A, EphB6, RUNX2 and a variant of RUNX2. The altered transcripts identified by microarray analysis were involved in cell-cell or cell-matrix interaction, Rho signaling, calcium homeostasis and copper-binding/sensitive activities. A set of nine genes that included GPCR11, cadherin 11, annexin A1, vimentin, lactate dehydrogenase B (upregulated in MDA-MB-231) and GREB1, S100A8, amyloid b precursor protein, claudin 3 and cadherin 1 (downregulated in MDA-MB-231) were sufficient to distinguish MDA-MB-231 from MCF7 cells. The downregulation of a set of transcripts for proteins involved in cell-cell interaction indicated these transcripts as potential markers for invasiveness that can be detected by methylation-specific PCR. The proteomic profiles indicated altered abundance of fewer proteins as compared to transcript profiles. Antisense knockdown of selected transcripts led to inhibition of cell proliferation that was accompanied by altered proteomic profiles. The proteomic profiles of antisense transfectants suggest the involvement of peptidyl-prolyl isomerase, Raf kinase inhibitor and 80 kDa protein kinase C substrate in mediating the inhibition of cell proliferation.
Breast cancer mortality in women is largely attributed to the metastasis of primary breast tumors. We have analysed the function of EphB6, a kinase-deficient receptor, in the invasive phenotype of breast cancer cell lines. We have demonstrated the loss of EphB6 protein in invasive breast carcinoma cell lines and absence of EphB6 transcript in a metastatic breast tumor specimen. The function of EphB6 in invasiveness was confirmed by the ability of EphB6 protein to decrease the in vitro invasiveness of MDA-MB-231, MDA-MB-435 and BT549 cells transfected with an EphB6 expression construct. In MDA-MB-231 cells, the decreased invasiveness appeared to be mediated by decreased transcript levels of matrix metalloproteinase (MMP)7 and MMP19, and increased transcript levels of tissue inhibitors of metalloproteinase 2. In addition to affecting invasiveness phenotype, EphB6 overexpression was also responsible for altering the growth rate and colony-forming efficiency of MCF-7 and MDA-MB-231 cells in a cell-line-specific manner. We suggest that the significant decrease in the invasiveness of MDA-MB-231 and other cell lines transfected with EphB6 is likely occurring by the ability of EphB6 to transduce signals to the nucleus and altering relevant gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.