Photoluminescence effects in organic chromophores are of significant importance and requires precise description of low lying excited states. In this communication, we put forward an alternative time‐independent DFT scheme for computing lowest single‐particle excitation energy, especially for singlet excited state. This adopts a recently developed “virial“‐theorem based model of singlet‐triplet splitting which requires a DFT calculation on closed shell ground state and a restricted open‐shell triplet excited state, followed by a simple 2e- integral evaluation. This produces vertical excitation energies in small molecules, linear and non‐linear polycyclic aromatic hydrocarbon and organic dyes in comparable accuracy to the TDDFT. We also explore the functional dependency of present method with three different functionals (B3LYP, wB97X and CAM‐B3LYP) for polyenes and linear acenes. A systematic comparison with literature value illustrates the validity and usefulness of the present scheme in determining optical gap with fair computational cost.
Organic molecules that exhibit charge-transfer (CT) excited states are known to play an important role in processes linked to electron transfer properties and molecular conductance. In this article, we present a simple technique based on "Becke's excitation theorem" that offers an accurate picture of these electronic states. It expresses the correlated energy splitting between triplet and its corresponding singlet states by a twoelectron integral, which is numerically evaluated by our recently developed strategy on Cartesian grid. We first examine the consistency of our adopted numerical strategy to evaluate the integral with the original prescribed technique. Then we assess the method on weakly bound CT complexes with three different functionals (BLYP, B3LYP, and LC-BLYP). The accuracy on asymptotic limit of CT excitation is also explored. Finally in order to illustrate the strength and feasibility, it is further extended to a few "challenging" molecules. The method, when employed with hybrid B3LYP functional, turns out to be quite accurate to describe CT excitation energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.