An Elman network is used for the prediction of material removal rate (MRR) in electrical discharge machining (EDM). An Elman network is a dynamic recurrent neural network that can be used to model non-linear dynamic systems. Training of the models is performed with data from series of EDM experiments on AISI D2 tool steel from finishing, semi-finish to roughing operations. The machining parameters such as discharge current, pulse duration, duty cycle, and voltage were used as model input variables during the development of predictive models. The developed model is validated with a new set of experimental data that was not used for the training step. The mean percentage error of the model is found to be less than 6 per cent, which shows that the proposed model can satisfactorily predict the MRR in EDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.