Getah karet merupakan salah satu hasil perkebunan yang cukup tinggi di Indonesia, oleh karena itu pengembangan kualitas getah karet merupakan suatu hal yang sangat penting. Karena mutu yang baik akan menghasilkan produk yang baik juga. Biasanya kualitasgetah karet ditentukan oleh Kadar Karet Kering (KKK) yang tinggi dengan kandungan air yang rendah. kadar karet kering juga dapat dijadikan tolak ukur untuk menilai kualitas pohon karet terbaik. Pada penelitian ini telah mendapatkan hasil perangkingan yang didapatkan dari nilai akhir masing masing metode. Peringkat pertama pada metode MOORA dengan niali 2,603 pada sensitivitasi 3 dan yang terendah pada metode SMARTER dengan nilai 0,084 pada sensitivitas pertama. Dan pada sensitivitas kedua, semua metode memiliki nilai yang sama yaitu 0,2. Maka dapat disimpulkan MOORA merupakan metode terbaik dari 2 metode lainnya.
In autonomous mobile robots, Simultaneous Localization and Mapping (SLAM) is a demanding and vital topic. One of two primary solutions of SLAM problem is FastSLAM. In terms of accuracy and convergence, FastSLAM is known to degenerate over time. Previous work has hybridized FastSLAM with a modified Firefly Algorithm (FA), called unranked Firefly Algorithm (uFA), to optimize the accuracy and convergence of the robot and landmarks position estimation. However, it has not shown the performance of the accuracy and convergence. Therefore, this work is done to present both mentioned performances of FastSLAM and uFA-FastSLAM to see which one is better. The result of the experiment shows that uFA-FastSLAM has successfully improved the accuracy (in other words, reduced estimation error) and the convergence consistency of FastSLAM. The proposed uFA-FastSLAM is superior compared to conventional FastSLAM in estimation of landmarks position and robot position with 3.30 percent and 7.83 percent in terms of accuracy model respectively. Furthermore, the proposed uFA-FastSLAM also exhibits better performances compared to FastSLAM in terms of convergence consistency by 93.49 percent and 94.20 percent for estimation of landmarks position and robot position respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.