In this paper, the concept of microstructural slip is introduced in the flow of micropolar fluids pertinent to model various physical situations. The flow is modeled by a set of PDEs which are transformed to a nonlinear system of ODEs by employing boundary layer transformations. The system of governing equations is implemented using MATLAB bvp4c function along with the initial-boundary conditions. The code is validated by comparing the computed results in the limiting case with the available literature. Influence of microstructural slip on the skin friction coefficient and Nusselt number along with hydrodynamic and thermal boundary layer profiles is studied and discussed. It is found that, in the presence of microstructural slip, the microrotational velocity boundary layer thickness decreases up to a maximum of 37.5% in its value, in comparison to the case where there is no microstructural slip effect. The results predict that, in the presence of first-order translational slip, the microrotations have shown counterrotational phenomena in comparison to the case where there is no translational slip effect. Moreover, second-order translational slip results in declining the microrotational velocity and associated layer thickness.
This paper applies Homotopy Analysis Method (HAM) to obtain analytical solutions of nonlinear Schrödinger equations. Numerical results clearly reflect complete compatibility of the proposed algorithm and discussed problems. Several examples are presented to show the efficiency and simplicity of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.