Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a prevalent condition worldwide and is caused by loss-of-function mutations in the G6PD gene. Individuals with deficiency are more susceptible to oxidative stress which leads to the classical, acute hemolytic anemia (favism). However, G6PD deficiency in newborn infants presents with an increased risk of hyperbilirubinemia, that may rapidly escalate to result in bilirubin induced neurologic dysfunction (BIND). Often with no overt signs of hemolysis, G6PD deficiency in the neonatal period appears to be different in the pathophysiology from favism. This review discusses and compares the mechanistic pathways involved in these two clinical presentations of this enzyme disorder. In contrast to the membrane disruption of red blood cells and Heinz bodies formation in favism, G6PD deficiency causing jaundice is perhaps attributed to the disruption of oxidant-antioxidant balance, impaired recycling of peroxiredoxin 2, thus affecting bilirubin clearance. Screening for G6PD deficiency and close monitoring of affected infants are important aspects in neonatal care to prevent kernicterus, a permanent and devastating neurological damage. WHO recommends screening for G6PD activity of all infants in countries with high prevalence of this deficiency. The traditional fluorescent spot test as a screening tool, although low in cost, misses a significant proportion of cases with moderate deficiency or the partially deficient, heterozygote females. Some newer and emerging laboratory tests and diagnostic methods will be discussed while developments in genomics and proteomics contribute to increasing studies that spatially profile genetic mutations within the protein structure that could predict their functional and structural effects. In this review, several known variants of G6PD are highlighted based on the location of the mutation and amino acid replacement. These could provide insights on why some variants may cause a higher degree of phenotypic severity compared to others. Further studies are needed to elucidate the predisposition of some variants toward certain clinical manifestations, particularly neonatal hyperbilirubinemia, and how some variants increase in severity when co-inherited with other blood- or bilirubin-related genetic disorders.
Background Medical transportation is an essential step in health care services, and includes ground, air and water transportation. Among the important uses of medical transportation is the delivery of blood products in the event of a clinical emergency. Drone technology is the latest technological advancement that may revolutionize medical transportation globally. Nonetheless, its economic evaluation is scant and insufficient, whilst its cost-effectiveness remains controversial. The aim of this study was to compare the cost-effectiveness of drone transportation versus the ambulance. Methods The setting of the study was within a developing nation. An economic evaluation study of drone versus ambulance for emergency blood products transportation between the Sabah Women and Children Hospital (SWACH) and the Queen Elizabeth II Hospital (QEH2) on Borneo Island was conducted using the Cost-Effectiveness Analysis (CEA) technique. The total cost of each mode of transportation was calculated using the Activity Based Costing (ABC) method. Travel time was used as a denominator to estimate the Incremental Cost Effectiveness Ratio (ICER). Results For one clinical emergency in SWACH, a round trip of blood products transportation from SWACH to QEH2 costs RM1,266.02 (USD307.09) when using the ambulance, while the drone costs RM1,313.28 (USD319.36). The travel time for the drone was much shorter (18 min) compared to the ambulance (34 min). The Cost-Effectiveness Ratio (CER) of ambulance transportation was RM37.23 (USD9.05) per minute whilst the CER of drone transportation was RM72.96 (USD17.74) per minute. The ICER of drone versus ambulance was − 2.95, implying an increase of RM2.95 in cost for every minute saved using a drone instead of an ambulance. Conclusion Although drone transportation of blood products costs more per minute compared to the ambulance, the significantly shorter transport time of the drone offset its cost. Thus, we believe there is good economic potential for drone usage for blood products transportation in developing nations particularly if the drone price decreases and its operational lifespan increases. Our limitation of a non-clinical denominator used in this study leads to the recommendation for use of clinical outcomes in future studies.
Supplemental Digital Content is available in the text
Thalassaemia is a public health problem in Malaysia, with each ethnic group having their own common mutations. However, there is a lack on data on the prevalence and common mutations among the indigenous people. This cross-sectional study was performed to determine the common mutations of α- and β-thalassaemia among the subethnic groups of Senoi, the largest Orang Asli group in Peninsular Malaysia. Blood samples collected from six Senoi subethnic groups were analysed for full blood count and haemoglobin analysis (HbAn). Samples with abnormal findings were then screened for α- and β-globin gene mutations. Out of the 752 samples collected, 255 showed abnormal HbAn results, and 122 cases showing abnormal red cell indices with normal HbAn findings were subjected to molecular screening. DNA analysis revealed a mixture of α- and β-globin gene mutations with 25 concomitant cases. The types of gene abnormalities detected for α-thalassaemia were termination codon (T>C) Hb CS (α α), Cd59 (G>A) haemoglobin Adana (Hb Adana) (α α), initiation codon (ATG>A-G) (α α), two-gene deletion (- ), and single-gene 3.7-kb deletion (-α ). For β-thalassaemia, there were Cd26 (G>A) Hb E (β ), Cd19 (A>G) Haemoglobin Malay (Hb Malay) (β ), and IVS 1-5 (G>C) (β ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.