Inflammatory bowel disease (IBD) is a complex, chronic inflammatory disease of the gastrointestinal tract with subtypes Crohn’s disease (CD) and ulcerative colitis (UC). While evidence indicates IBD is characterized by alterations in the composition and abundance of the intestinal microbiome, the challenge remains to specify bacterial species and their metabolites associated with IBD pathogenesis. By the integration of microbiome multi-omics data and computational methods, we provide analyses and methods for the first time to identify microbiome species and their metabolites that are associated with the human intestine mucosal immune response in patients with CD and UC at a systems level. First, we identified seven gut bacterial species and seventeen metabolites that are significantly associated with Th17 cellular differentiation and immunity in patients with active CD by comparing with those obtained in inactive CD and non-IBD controls. The seven species are Ruminococcus gnavus, Escherichia coli, Lachnospiraceae bacterium, Clostridium hathewayi, Bacteroides faecis, Bacteroides vulgatus, and Akkermansia muciniphila, and a few associated metabolites include the secondary bile acid lithocholate and three short-chain fatty acids (SCFAs): propionate, butyrate, and caproate. We next systematically characterized potential mechanistic relationships between the Th17-involved metabolites and bacterial species and further performed differential abundance analysis for both microbiome species and their metabolites in CD and UC relative to non-IBD controls with their metagenomic and metabolomic data. Based on the deconvolution of immune cell compositions from host intestinal bulk RNA-seq, we investigated changes in immune cell composition and abundance in CD and UC in comparison to non-IBD controls. Finally, we further extended our species and metabolite associations with immune cells from Th17 and Th2 cells to B cells, plasma B cells, CD4+ T cells, and CD8+ T cells. While a set of associations of immune cells with bacterial species and metabolites was supported by published evidence, the new findings in this work will help to furthering our understanding of immune responses and pathogenesis in IBD.
Chinese hamster ovary (CHO) cells have been used as the industry standard for the production of therapeutic monoclonal antibodies for several decades. Despite significant improvements in commercial‐scale production processes and media, the CHO cell has remained largely unchanged. Due to the cost and complexity of whole‐genome sequencing and gene‐editing it has been difficult to obtain the tools necessary to improve the CHO cell line. With the advent of next‐generation sequencing and the discovery of the CRISPR/Cas9 system it has become more cost effective to sequence and manipulate the CHO genome. Here, we provide a comprehensive de novo assembly and annotation of the CHO‐K1 based CHOZN® GS−/− genome. Using this platform, we designed, built, and confirmed the functionality of a whole genome CRISPR guide RNA library that will allow the bioprocessing community to design a more robust CHO cell line leading to the production of life saving medications in a more cost‐effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.