Purpose-The purpose of this paper is to develop a mathematical model that determines the location of temporary logistics hubs (TLHs) for disaster response and proposes a new method to determine weights of the objectives in a multi-objective optimization problem. The research is motivated by the importance of TLHs and the complexity that surrounds the determination of their location. Design/methodology/approach-A multi-period multi-objective model with multi-sourcing is developed to determine the location of the TLHs. A fuzzy factor rating system (FFRS) under the group decision-making (GDM) condition is then proposed to determine the weights of the objectives when multiple decision makers exist. Findings-The interview with decision makers shows the heterogeneity of decision opinions, thus substantiating the importance of GDM. The optimization results provide useful managerial insights for decision makers by considering the trade-off between two non-commensurable objectives. Research limitations/implications-In this study, decision makers are considered to be homogeneous, which might not be the case in reality. This study does not consider the stochastic nature of relief demand. Practical implications-The outcomes of this study are valuable to decision makers for relief distribution planning. The proposed FFRS approach reveals the importance of involving multiple decision makers to enhance sense of ownership of established TLHs. Originality/value-A mathematical model highlighting the importance of multi-sourcing and short operational horizon of TLHs is developed. A new method is proposed and implemented to determine the weights of the objectives. To the best of the authors' knowledge, the multi-actor and multi-objective aspects of the TLH location problem have not thus far been considered simultaneously for one particular problem in humanitarian logistics.
Purpose
The purpose of this paper is to reveal the importance of the order of establishment of temporary logistics hubs (TLHs) when resources (mobile storage units used as TLHs) are limited and to present the development and implementation of a methodology that determines the order of establishment of TLHs to support post-disaster decision making.
Design/methodology/approach
It employed a decision support system that considers multiple decision makers and subjective attributes, while also addressing the impreciseness inherent in post-disaster decision making for ordering the establishment of TLHs. To do so, an optimization model was combined with a fuzzy multi-attribute group decision making approach. A numerical illustration was performed using data from the April 2015 Nepal Earthquake.
Findings
The results showed the location and order of establishment of TLHs, and demonstrated the impact of decision makers’ opinions on the overall ordering.
Research limitations/implications
The study does not discuss the uncertain nature of the location problem and the potential need for relocation of TLHs.
Practical implications
This methodology offers managerial insights for post-disaster decision making when resources are limited and their effective utilization is vital. The results highlight the importance of considering the opinions of multiple actors/decision makers to enable coordination and avoid complication between the growing numbers of humanitarian responders during disaster response.
Originality/value
This study introduces the concept of the order of establishment of TLHs and demonstrates its importance when resources are limited. It develops and implements a methodology determining the order of establishment of TLHs to support post-disaster decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.