In this report, alkanethiol self assembled monolayers (SAM) with two different chain lengths were used to immobilize the functionalizing enzyme (glucose oxidase) onto gold nanopillar modified electrodes and the electrochemical processes of these functionalized electrodes in glucose detection were investigated. First, the formation of these SAMs on the nanopillar modified electrodes was characterized by the cyclic voltammetry and electrochemical impedance spectroscopy techniques, and then the detection sensitivity of these functionalized electrodes to glucose was evaluated by the amperometry technique. Results showed that the SAM of alkanethiols with a longer chain length resulted in a higher degree of surface coverage with less defect and a higher electron transfer resistance, whereas the SAM of alkanethiols with a shorter chain length gave rise to a higher detection sensitivity to glucose. This study sheds some new insight into how to enhance the sensing performance of nanopillar modified electrodes.
In this study, the functionalization process for nanopillar enhanced electrodes (NEEs) using glucose oxidase (GOx) with polypyrrole (PPY) is optimized for the purpose of achieving enhanced sensing performances for these electrodes in glucose detection. Specifically, an optimal roughness factor for the NEEs and an optimal set of electro-polymerization/deposition parameters for their functionalization using GOx/PPY are identified. Results show that NEEs with a roughness factor of about 60 are optimal for enhancing the amperometric current responses and that for such electrodes an electro-functionalization/deposition process at a deposition current of 50 µA cm(-2) and a total charge of 150 mC cm(-2) will give rise to a high sensing performance with a sensitivity as high as 36 µA cm(-2) mM(-1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.